scalable debut

This commit is contained in:
Aurelien Rebourg 2020-01-16 17:02:40 +01:00
parent b32c833f7f
commit f8eaa5a7a5
5 changed files with 3112 additions and 34 deletions

3
.gitignore vendored
View File

@ -31,6 +31,7 @@ _opam/
# Local files
*~
# Log files
*.log
*.cache
*caml-toplevel*

View File

@ -26,7 +26,7 @@ let () = let t_list = [((20, is_prime), [(2, 5); (3, 7); (5, 11); (11, 23)])]
run_test template_1f_L2 "Double Primes Generator" double_primes t_list
;;
let () = let t_list = [((20, is_prime), [(2, 3); (3, 5); (5, 7); (11, 13); (17, 19)])]
let () = let t_list = [((20, is_prime), [(3, 5); (5, 7); (11, 13); (17, 19)])]
in
run_test template_1f_L2 "Twin Primes Generator" twin_primes t_list
;;

View File

@ -1,3 +1,4 @@
(** A naive implementation of big integers
This module aims at creating a set of big integers naively. Such data
@ -17,19 +18,82 @@ decomposition of a non-negative integer.
(** Creates a bitarray from a built-in integer.
@param x built-in integer.
*)
let from_int x = []
let sign x =
if x < 0 then
-1
else
1;;
let from_int x =
if x = 0 then []
else
let rec from_int_rec n =
match n with
0 -> []
| n -> n mod 2::from_int_rec (n/2)
in let bitsign =
if sign x = -1 then
1
else
0
in bitsign::from_int_rec (sign x * x);;
(** Transforms bitarray of built-in size to built-in integer.
UNSAFE: possible integer overflow.
@param bA bitarray object.
*)
let to_int bA = 0
*)
let modulo a b =
match sign a = -1 && a mod b != 0 with
true -> a mod b + b
| _ -> a mod b;;
let power x n =
if n = 0 then 1 else
let rec power_rec x1 n =
match n with
1 -> x1
| n when modulo n 2 = 0 -> power_rec (x1 * x1) (n/2)
| n -> x1 * power_rec (x1 * x1) ((n-1)/2)
in power_rec x n;;
let to_int bA =
match bA with
[] -> 0
| e::bA1 -> begin
let sign = match e with
0 -> 1
| _ -> -1
in let rec to_int_rec bA pow =
match bA with
[] -> 0
| e::bA1 -> (e * power 2 pow) + to_int_rec bA1 (pow + 1)
in sign * to_int_rec bA1 0
end;;
(** Prints bitarray as binary number on standard output.
@param bA a bitarray.
*)
let print_b bA = ()
let print_b bA =
match bA with
[] -> print_endline "0"
| e::l1 -> begin
let rec print_b_rec bA =
match bA with
[] -> print_endline ""
| e::l1 -> begin
print_b_rec l1;
print_int e
end
in
if e = 1 then (
print_string "-";
print_b_rec l1
) else
print_b_rec l1
end;;
(** Toplevel directive to use print_b as bitarray printer.
CAREFUL: print_b is then list int printer.
UNCOMMENT FOR TOPLEVEL USE.
@ -46,22 +110,45 @@ let print_b bA = ()
@param nA A natural, a bitarray having no sign bit.
Assumed non-negative.
@param nB A natural.
*)
let rec compare_n nA nB = 0
*)
let rec rem_0 bA =
match bA with
[] -> []
| 1::l1 -> 1::l1
| _::l1 -> rem_0 l1;;
let compare_n nA nB =
let nA = rem_0 (List.rev nA)
and nB = rem_0 (List.rev nB)
in if List.length nA > List.length nB then
1
else if List.length nA < List.length nB then
-1
else
let rec compare_n_rec nA nB =
match (nA, nB) with
([], []) -> 0
| ([], _) | (0::_, 1::_) -> -1
| (_, []) | (1::_, 0::_) -> 1
| (_::l1, _::l2) -> compare_n_rec l1 l2
in compare_n_rec nA nB;;
(** Bigger inorder comparison operator on naturals. Returns true if
first argument is bigger than second and false otherwise.
@param nA natural.
@param nB natural.
*)
let (>>!) nA nB = true
let (>>!) nA nB = compare_n nA nB = 1;;
(** Smaller inorder comparison operator on naturals. Returns true if
first argument is smaller than second and false otherwise.
@param nA natural.
@param nB natural.
*)
let (<<!) nA nB = true
let (<<!) nA nB = compare_n nA nB = -1;;
(** Bigger or equal inorder comparison operator on naturals. Returns
true if first argument is bigger or equal to second and false
@ -69,7 +156,7 @@ let (<<!) nA nB = true
@param nA natural.
@param nB natural.
*)
let (>=!) nA nB = true
let (>=!) nA nB = compare_n nA nB = 1 || compare_n nA nB = 0;;
(** Smaller or equal inorder comparison operator on naturals. Returns
true if first argument is smaller or equal to second and false
@ -77,28 +164,36 @@ let (>=!) nA nB = true
@param nA natural.
@param nB natural.
*)
let (<=!) nA nB = true
let (<=!) nA nB = compare_n nA nB = -1 || compare_n nA nB = 0;;
(** Comparing two bitarrays. Output is 1 if first argument is bigger
than second -1 if it smaller and 0 in case of equality.
@param bA A bitarray.
@param bB A bitarray.
*)
let compare_b bA bB = 0
let compare_b bA bB =
match (bA, bB) with
([], []) -> 0
| ([], _) | (1::_, 0::_) -> -1
| (_, []) | (0::_, 1::_) -> 1
| (sign:: nA, _::nB) ->
match sign with
0 -> compare_n (0::nA) (0::nB)
| _ -> -1 * compare_n (0::nA) (0::nB);;
(** Bigger inorder comparison operator on bitarrays. Returns true if
first argument is bigger than second and false otherwise.
@param nA natural.
@param nB natural.
*)
let (<<) bA bB = true
let (<<) bA bB = compare_b bA bB = -1;;
(** Smaller inorder comparison operator on bitarrays. Returns true if
first argument is smaller than second and false otherwise.
@param nA natural.
@param nB natural.
*)
let (>>) bA bB = true
let (>>) bA bB = compare_b bA bB = 1;;
(** Bigger or equal inorder comparison operator on bitarrays. Returns
true if first argument is bigger or equal to second and false
@ -106,7 +201,7 @@ let (>>) bA bB = true
@param nA natural.
@param nB natural.
*)
let (<<=) bA bB = true
let (<<=) bA bB = compare_b bA bB = -1 || compare_b bA bB = 0;;
(** Smaller or equal inorder comparison operator on naturals. Returns
true if first argument is smaller or equal to second and false
@ -114,52 +209,122 @@ let (<<=) bA bB = true
@param nA natural.
@param nB natural.
*)
let (>>=) bA bB = true
;;
let (>>=) bA bB = compare_b bA bB = 1 || compare_b bA bB = 0;;
(** Sign of a bitarray.
@param bA Bitarray.
*)
let sign_b bA = 0
let sign_b bA =
match bA with
[] -> 1
| e::_ when e = 1 -> -1
| _ -> 1;;
(** Absolute value of bitarray.
@param bA Bitarray.
*)
let abs_b bA = []
let abs_b bA =
match bA with
[] -> []
| _::bA -> 0::bA;;
(** Quotient of integers smaller than 4 by 2.
@param a Built-in integer smaller than 4.
*)
let _quot_t a = 0
let _quot_t a =
match a with
0 | 1-> 0
| 2 | 3-> 1
| _ -> invalid_arg "must be smaller than 4";;
(** Modulo of integer smaller than 4 by 2.
@param a Built-in integer smaller than 4.
*)
let _mod_t a = 0
let _mod_t a =
match a with
0 | 2-> 0
| 1 | 3-> 1
| _ -> invalid_arg "must be smaller than 4";;
(** Division of integer smaller than 4 by 2.
@param a Built-in integer smaller than 4.
*)
let _div_t a = (0, 0)
let _div_t a = (_quot_t a, _mod_t a);;
(** Addition of two naturals.
@param nA Natural.
@param nB Natural.
*)
let add_n nA nB = []
let add_n nA nB =
match (nA, nB) with
(l, []) | ([], l) -> l
| (_::nA, _::nB) ->
let rec add_n_rec nA nB ret res=
match (nA, nB) with
([], []) -> ret::res
| (e::l1, []) | ([], e::l1) -> let tot = e + ret in
let (q, r) = _div_t tot in
add_n_rec l1 [] q (r::res)
| (e1::nA, e2::nB) ->
let tot = e1 + e2 + ret in
let (q, r) = _div_t tot in
add_n_rec nA nB q (r::res)
in List.rev (add_n_rec nA nB 0 [0]);;
(** Difference of two naturals.
UNSAFE: First entry is assumed to be bigger than second.
@param nA Natural.
@param nB Natural.
*)
let diff_n nA nB = []
let bit_comp = function 0 -> 1 | _ -> 0;;
let complem2 bA n=
match bA with
[] -> []
| e::bA ->
let rec complem_rec bA comp res n=
match n with
0 -> res
| n ->
let (e:: bA) = match bA with
[] -> [0]
| _ -> bA in
let res = if comp then
(bit_comp e)::res
else e::res
and comp = if not comp && e = 1 then true else comp
in complem_rec bA comp res (n-1)
in bit_comp e::List.rev (complem_rec bA false [] (n - 1));;
let diff_n nA nB = add_n nA (complem2 nB (List.length nA))
(** Addition of two bitarrays.
@param bA Bitarray.
@param bB Bitarray.
*)
let add_b bA bB = []
*)
let get_signed_bitarray bsign bA =
match bA with
[] -> []
| _::bA -> bsign::bA;;
let add_b bA bB =
match (bA, bB) with
([], l) | (l, []) -> l
| (0::bA, 0::bB) -> get_signed_bitarray 0 (add_n (0::bA) (0::bB))
| (1::bA, 1::bB) -> get_signed_bitarray 1 (add_n (0::bA) (0::bB))
| (1::bA, 0::bB) when (<<=) (0::bA) (0::bB) ->
get_signed_bitarray 0 (diff_n (0::bB) (0::bA))
| (1::bA, 0::bB) ->
get_signed_bitarray 1 (add_n (0::bB) (complem2 (1::bA) (List.length bA)))
| (0::bA, 1::bB) when (<<) (0::bA) (0::bB) ->
get_signed_bitarray 1 (add_n (0::bA) (complem2 (1::bB) (List.length bB)))
| (0::bA, 1::bB) ->
get_signed_bitarray 0 (diff_n (0::bA) (0::bB))
| _ -> failwith "error"
(** Difference of two bitarrays.
@param bA Bitarray.
@ -171,19 +336,48 @@ let diff_b bA bB = []
@param bA Bitarray.
@param d Non-negative integer.
*)
let rec shift bA d = []
let rec shift bA d =
match d with
0 -> bA
| d -> 0::shift bA (d-1);;
(** Multiplication of two bitarrays.
@param bA Bitarray.
@param bB Bitarray.
*)
let mult_b bA bB = []
let mult_b bA bB =
match (bA, bB) with
([], _) | (_, []) -> []
| (sign1::bA, sign2::bB) ->
let rec mult_b_rec bA bB n =
match bA with
[] -> []
| e::bA ->
let a = match e with 0 -> [] | 1 -> bB in
add_n (shift a n) (mult_b_rec bA bB (n+1))
in match (sign1, sign2) with
(0,0) | (1,1) -> 0::mult_b_rec bA bB 0
| _ -> 1::mult_b_rec bA bB 0
(** Quotient of two bitarrays.
@param bA Bitarray you want to divide by second argument.
@param bB Bitarray you divide by. Non-zero!
*)
let quot_b bA bB = []
let quot_b bA bB =
match (bA, bB) with
([], _) | (_, []) -> []
| (sign1::bA, sign2::bB) ->
let rec quot_b_rec bA bB n =
match bA with
[] -> []
| e::bA ->
let a = match e with 0 -> [] | 1 -> bB in
add_n (shift a n) (quot_b_rec bA bB (n+1))
in match (sign1, sign2) with
(0,0) | (1,1) -> 0::mult_b_rec bA bB 0
| _ -> 1::mult_b_rec bA bB 0
(** Modulo of a bitarray against a positive one.
@param bA Bitarray the modulo of which you're computing.

File diff suppressed because it is too large Load Diff

View File

@ -11,8 +11,8 @@ open Test_scalable_templates
let p = from_int 9967 and q = from_int 9973
let ((_, e), (n, d)) = generate_keys_rsa p q
let phin = mult_b (diff_b p [1;1]) (diff_b q [1;1])
let is_inverse x y n = mod_b (mult_b (mod_b x n) (mod_b y n)) n = [1; 1]
let phin = mult_b (diff_b p [0;1]) (diff_b q [0;1])
let is_inverse x y n = mod_b (mult_b (mod_b x n) (mod_b y n)) n = [0; 1]
let () = let t_list = [(e, d, phin), true]
in
run_test template_3_b "Generate RSA Keys Test" is_inverse t_list