(** Basic arithmetics for ordered euclidian ring. *) open Scalable let sign l = match sign_b l with 1 -> [0;1] | _ -> [1;1] (** Greater common (positive) divisor of two non-zero integers. @param bA non-zero bitarray. @param bB non-zero bitarray. *) let rec gcd_b bA bB = let r = mod_b (mult_b (sign bA) bA) (mult_b (sign bB) bB) in if (>>!) r [] then gcd_b (mult_b (sign bB) bB) r else bB;; (** Extended euclidean division of two integers NOT OCAML DEFAULT. Given non-zero entries a b computes triple (u, v, d) such that a*u + b*v = d and d is gcd of a and b. @param bA non-zero bitarray. @param bB non-zero bitarray. *) let bezout_b bA bB = let rec bezout_b_rec u v r u1 v1 r1= if r1 = [] then (u, v, add_b (mult_b bA u) (mult_b bB v)) else let q = quot_b r r1 in bezout_b_rec u1 v1 r1 (diff_b u (mult_b q u1)) (diff_b v (mult_b q v1)) (diff_b r (mult_b q r1)) in bezout_b_rec [0;1] [] bA [] [0;1] bB;;