(** Testing for primality *) open Scalable open Scalable_basic_arithmetics open Scalable_power (** Deterministic primality test *) let is_prime n = if n = [0;0;1] || n = [0;1;1] then true else if mod_b n [0;0;1] = [] || mod_b n [0;1;1] = [] then false else let rec is_prime_rec k = let test_inf = diff_b (mult_b [0;0;1;1] k) [0;1] in let test_sup = add_n test_inf [0;0;1] in if (>>) (mult_b test_inf test_inf) n then true else match (test_inf, test_sup) with (a, b) when mod_b n a = [] || mod_b n b = [] -> false | _ -> is_prime_rec (add_n k [0;1]) in is_prime_rec [0;1];; (** Pseudo-primality test based on Fermat's Little Theorem @param p tested bitarray @param testSeq sequence of bitarrays againt which to test *) let is_pseudo_prime p test_seq = let rec is_pseudo_prime_rec l = match l with [] -> true | e::l1 when mod_power e (diff_b p [0;1]) p <> [0;1] -> begin if gcd_b e p = [0;1] then false else is_pseudo_prime_rec l1 end | _::l1 -> is_pseudo_prime_rec l1 in is_pseudo_prime_rec test_seq;;