
Epita AFIT

Arithmetic for IT

Abstract

This is main reference for AFIT (Arithmetic for IT) project content. Project aims
at generating RSA and El Gamal encryption data for educational purposes. On the
way, students shall face core arithmetic notions needed to generate and manipulate such
cryptosystems.

Contents

1 Introduction 2

2 How To Read This Document 2

3 Integer Arithmetic 3
3.1 Euclidean Division . 3
3.2 Primality . 4
3.3 Euclid’s Algorithm . 5
3.4 Bézout Theorem . 6

4 Modular Arithmetic 7
4.1 Day of Week . 7
4.2 The Ring Z/nZ . 9
4.3 Invertible Elements of Z/nZ . 11
4.4 Fermat’s Little Theorem . 12
4.5 Chinese Remainder Theorem . 14

5 Input of the CRT 17
5.1 Computing Invertibles . 18
5.2 Factoring Integers . 19

6 Ciphering : An Ersatz 20
6.1 Symmetric Ciphers . 20
6.2 Asymmetric Ciphers . 21

6.2.1 RSA Cryptosystem . 21
6.2.2 El Gamal Cryptosystem . 22

November 27, 2018 1 B. DUDIN

Epita AFIT

1 Introduction

Arithmetic is a branch of mathematics that consists of the study of “numbers”, espe-
cially the properties of the traditional operations on them – addition, subtraction,
multiplication and division1.

In integer arithmetic divisibility is one of the central notions we deal with : Are two given
numbers multiple of each other? Are there specific numbers that don’t have any non-trivial
divisors? Can one decompose a given integer as a product of simpler (simplest) integer types
from that perspective? You already know the answers to a number of these questions. Numbers
that can only be divided by themselves or ±1 are prime numbers. Any integer can be uniquely
written as a product of prime numbers up to reordering.

These apparently simple questions are at the core of arithmetic uses in IT. Aside from the
fact computers are integer calculators, divisibility questions are central in ciphering systems
enabling secure exchange of information between two parties ; assuming a third party gets
access to the exchanged information they will have too much trouble deciphering it to access
the initial message.

The most known ciphering algorithm, RSA2, is based on the fact that factoring a number
which is a product of two prime numbers is a hard question, needing much resources and time.
On the opposite, computing powers of integers modulo a fixed given natural number is much
less time-consuming.

The aim of this project is to get you through the arithmetic needed to try generating
reasonably sized encryption systems. Do not be mistaken however ; we’ll still be quite far
from any real-life implementation of ciphering algorithms.

2 How To Read This Document

This document is to serve as a mathematical reference for a coding project heavily involv-
ing elementary modular arithmetic. It contains examples, proofs and discussions needed to
understand the core reason why used mathematical results are as stated and not otherwise.
Everything you’ll find here is there for a (good) reason ; the least of which is to put some sense
into a number of apparently unexpected statements.

That being said an in-depth understanding of all aspects of this reference is not needed
to complete a satisfying enough piece of the AFIT project. Do not hesitate to look for
external documentation! ; this reference is here to serve as a structuring lattice for your
own searches. If you find references easing your learning process : go for it!

Here is a quick list of priorities to have, starting by high priority to low one. This is also a
reading order you can stick to.

• Section 3 is core arithmetic knowledge and has to be fully mastered ; part of it is only
rephrasing your in-class maths courses.

• Section 4 up till subsection 4.4 included is of essential importance to be able to write
down your first cryptosystem.

• Section 6 is the main aim of AFIT. Focus is on the RSA algorithm though, but both
are expected to be implemented.

• Sections 4.5 and 5 are challenging, they should be left aside as long as a proper imple-
mentation of RSA and ElGamal cryptosystems hasn’t been satisfyingly tested.

1https://en.wikipedia.org/wiki/Arithmetic.
2Standing for its inventors’ initials : Rivest, Shamir and Adleman.

November 27, 2018 2 B. DUDIN

https://en.wikipedia.org/wiki/Arithmetic

Epita AFIT

3 Integer Arithmetic

This section is a quick reminder about what you’re going through in elementary arithmetic.
OCaml primitives shall be given for basic arithmetic operations you’re expected to use within
your implementations.

Assumption 3.1. Our statements are going to be mainly focused on natural numbers. All
have extensions to the case of integers, we shall not need them in that general setting.

3.1 Euclidean Division

Definition 3.1. Given a couple of natural numbers (n, p) the natural number p is said to
divide n, denoted by p | n, if there is an integer k ∈ N such that n = kp.

Remark 1. An integer n is said to be even if 2 | n, it is odd otherwise.

Remark 2. Any integer divides 0. Indeed, given an integer n ∈ N we can always write 0 = 0×n.
If you take any two natural numbers randomly, there is little chance one of them divides

the other. It is always possible to account for the lack of divisibility though ; this is enforced
by what is called Euclidean division3.

Proposition 3.2. Given any couple of natural numbers (a, b) ∈ N×N∗ then there is a unique
couple (q, r) of natural numbers such that

a = bq + r where 0 ≤ r < b.

Terminology. The unique (q, r) has first entry called quotient of a by b while the second is
called the remainder of the Euclidean division of a by b. The latter is often called remainder
of a modulo b.

Proof. There are two statements in the previous proposition: one is about uniqueness and the
other is about existence.
Assuming there are two couples (q, r) and (q′, r′) satisfying statement then

bq + r = bq′ + r′ ⇒ b(q − q′) = r′ − r.

Now left hand of equality is in {−(b− 1), b− 1} and is though a multiple of b. It has then to
be 0. Thus r = r′ and then q = q′.
Existence is based on the following algorithmic procedure:

• If 0 ≤ a < b then (0, a) works

• Else add one to your quotient and look at Euclidean division of a− b and b.

Such a procedure terminates because of a deep property of N: any non-empty subset of N has
a minimal element. The point is to show the set {q | a− bq < b} is not empty. Intuition points
out the fact it is the case, since left-hand side of condition could be as negative as we’d wish.
This is indeed true but this stems from a deep fact we haven’t shown. Knowing it is not empty,
it has a minimal element q∗. For q∗ the expression a − bq∗ can only be non-negative. Indeed,
having q∗ being the smallest element satisfying a − bq∗ < b then a − b(q∗ − 1) ≥ b. Notice
the last inequality is obtained by adding b to the left-hand side. Both previous inequalities
cannot happen at the same time if a− bq∗ is not non-negative, because otherwise adding b to
the left-hand side wouldn’t give anything bigger than b.

3Also called integer division.

November 27, 2018 3 B. DUDIN

Epita AFIT

In OCaml there is no primitive to compute Euclidean division at once. There are two inorder
operators though to respectively compute quotient and remainder : / and mod.
Remark 3. Using Euclidean division, the fact “b | a” is equivalent to the fact “remainder of
Euclidean division of a by b is 0”. Therefore, testing whether a number a is a multiple of b in
OCaml is written

let is_divisible a b = (a mod b = 0) ;;

3.2 Primality

Definition 3.2. A natural number strictly bigger than 1 is said to be prime if it can only be
divided by 1 and itself.

Checking that a number n is prime is a hard problem ; there is no other option but to go
through the list of smaller natural numbers to check for divisibility. To be precise through
natural numbers smaller than

√
n. Indeed, if k | n then n/k does also divide n. Writing the

couples (k, n/k) of divisors of n one can figure out that at
√
n one starts getting the same

couples but with flipped entries. For instance for divisors of 36 we get

(1, 36) (36, 1)
(2, 18) (18, 2)
(4, 9) (9, 4)
(6, 6)

Importance of prime numbers comes from the following deep result:

Theorem 3.3. Any non-zero natural number n can be written as a product of prime numbers.
This decomposition of n into a product of prime numbers is unique up to reordering of involved
primes.

Terminology. A prime appearing in the decomposition of a natural number n is called a factor
of n.

This theorem roughly says that knowing prime numbers is enough to understand all there is
about natural numbers. The point is that generating prime numbers or characterising them is
a highly challenging problem. An easier problem to take care of is the one of checking whether
two given natural numbers have common factors.

Definition 3.3. Two non-zero natural numbers are said to be relatively prime or coprime
if they don’t have any common factors.

In order to tackle previous question of detecting whether two natural numbers are relatively
prime we’ll be introducing a new concept ; the GCD.

Definition 3.4. The GCD, short for Greater Common Divisor, of two non-zero integers a and
b is the biggest integer d satisfying d | a and d | b.

There is a point one needs to make clear here: why would such a maximal natural with
such property exist?

• 1 does always satisfy this property which means that the set of natural numbers satisfying
that property is not empty.

• Any such natural number is smaller that min{|a|, |b|}, set is therefore bounded above.
This gets us back to one of the core properties of N ensuring any non-empty subset
bounded above has a maximal element.

Notation. The GCD of two non-zero natural numbers a and b is denoted by a ∧ b.
Proposition 3.4. Two non-zero natural numbers a and b are relatively prime iff a ∧ b = 1.

November 27, 2018 4 B. DUDIN

Epita AFIT

3.3 Euclid’s Algorithm

This algorithm is central for all arithmetic computational applications. It is the main reason
why one can generate RSA public and private keys or parallelize integer computations.

The algorithm’s idea is based on the following remark : let a and b be two non-zero natural
numbers. Euclidean division gives a couple (q, r) of natural numbers such that

a = bq + r 0 ≤ r < b. (1)

If d divides a and b then it does divide a− bq ; if a = kd and b = `d then

a− bq = kd− q`d = (k − q`)d.

Thus d divides r. This is true for any common divisor of a and b; this is specifically true for
the GCD of a and b. Let us now assume that we’d go through this process iteratively : writing
r0 = a, r1 = b, q1 = q and r2 = r, equation (1) then becomes

r0 = q1r1 + r2 0 ≤ r2 < r1 (2)

where each divisor of r0 and r1 is also a divisor of r2. Updating

qn+1 = rn/rn+1

rn+2 = rn mod rn+1

we get the sequence of relations obtained through Euclidean division

r0 = q1r1 + r2 0 ≤ r2 < r1
r1 = q2r2 + r3 0 ≤ r3 < r2
...

...
...

...
...

...
rn−1 = qnrn + rn+1 0 ≤ rn+1 < rn

At each level of the set of equations any common divisor of rn+1 and rn is a divisor of rn+2.
At each such level the remainder rn is an integer which is at least 1 less than the previous
remainder unless it was already 0. All such remainders are non-negative, there is therefore
a point after which all obtained remainders are 0. Let ` be the index of the last non-zero
remainder in the previous sequence. We have then the sequence

r0 = q1r1 + r2 0 ≤ r2 < r1
r1 = q2r2 + r3 0 ≤ r3 < r2
...

...
...

...
...

...
rn−1 = qnrn + rn+1 0 ≤ rn+1 < rn
...

...
...

...
...

...
r`−2 = q`−1r`−1 + r` 0 ≤ r` < r`−1
r`−1 = q`r`

(3)

Let’s look at these equations bottom up. The last non-zero remainder r` divides r`−1. Now
looking at previous line it does have to divide r`−2. Going up through all equations we end up
having a natural number dividing r0 and r1, i.e. dividing a and b. We thus get that r` | a ∧ b.
Going up down, any common divisor d of r0 and r1 has to divide r`, this is in particular the
case of a ∧ b. We get that a ∧ b | r` and vice versa ; thus r` = a ∧ b.

Proposition 3.5. The last non-zero remainder in the previous sequence is the GCD of first
initial two terms.

November 27, 2018 5 B. DUDIN

Epita AFIT

Remark 4. It is legitimate to wonder how many Euclidean divisions one needs to do at most
to get the GCD of two given natural numbers. An easy bound to see is the one bounded by b.
There is in fact a better bound than b, given by 2 log2(b) + 2. You do not need to know how
to figure it out ; it is enough to understand how quick a Euclidean division algorithm is.

Remark 5. Deciding on relative primality of two given non-zero natural numbers is about
executing the Euclidean division and getting 1 as last non-zero remainder.

3.4 Bézout Theorem

This section is devoted to the Bézout Theorem, claiming the existence of a Diophantine com-
bination of two given integers equal to the GCD of these same two integers.

Theorem 3.6. Given a couple of non-zero natural numbers (a, b) there exists a couple of
integers (u, v) such that

ua+ vb = a ∧ b.

Proof. The proof is computational, it is based on Euclid’s Algorithm. It is mainly about
rewriting the series of equations 3. Expressing everything in terms of the remainders we get
the equations

a − q1b = r2
b − q2r2 = r3
...

...
...

...
...

r`−2 − q`−1r`−1 = a ∧ b

(4)

Going bottom up, one can express each one of the remainders in terms of previous ones up till
getting to a and b. This guess suggests that last relation is an integer combination of a and b.
Here is a way to see it4 in a proper way. Consider the following three equations, the last one
is the first equation of previous relations 4.

1× a − 0× b = r0
0× a − 1× b = r1
1× a − q1 × b = r2

(5)

Notice the last equation is the first minus q1 times the second. This pattern does in fact prop-
agate till getting the GCD on the right-hand side of equalities. For instance using Euclidean
division of r1 by r2 (given by second equation of 4) to subtract to second equation q2 times the
third in 5 we get

1× a + 0× b = r0
0× a + (−1)× b = r1
1× a + (−q1)× b = r2

(−q2)× a + (−1 + q1q2)× b = r3

(6)

Going on step by step, using Euclidean division of successive remainders on the right-hand-
sides to manipulate corresponding equations we get a relation between a ∧ b and a, b defined
by an integer combination of both. Writing (un) and (vn) for the sequences of coefficients of a
and b respectively the recursive definitions of both sequences are given by{

un+1 = un−1 − qnun
vn+1 = vn−1 − qnvn

(7)

This is the starting point of a proper implementation of the Bézout Algorithm you’re going to
have to try out.

4In fact to implement it!

November 27, 2018 6 B. DUDIN

Epita AFIT

Corollary 3.7. Two natural numbers a, b are relatively prime iff there is a couple of natural
numbers (u, v) such that

ua+ bv = 1. (8)

Proof. If a and b are relatively prime a ∧ b = 1. Following theorem 3.6 there is a couple (u, v)
satisfying the expected relation. Now if there is a relation such as 8, then any divisor of a and
b is also a divisor of 1. Since a ∧ b is a positive divisor of 1 it has to be 1, thus a and b are
relatively prime.

Remark 6. We’ve already discussed (briefly) the complexity of Euclid’s algorithm. It is time-
wise the same for the extended Euclid’s algorithm giving Bézout coefficients. We therefore
do have an efficient algorithm to measure whether two natural numbers are relatively prime.
That’s only one of the applications of this algorithm, we’ll be seeing a couple of others later
on.

4 Modular Arithmetic

Integers are not the only mathematical objects one can do arithmetic with ; there are a se-
ries of these. Main mathematical objects for which one can talk about arithmetic are called
rings. The set Z of integers is only one case of such structures, there are many others. We
shall be looking into extra examples of such objects, though we’ll be only interested in basic
computations with these ones.

4.1 Day of Week

Before getting into the core part of modular arithmetic, let’s look at an example where such
arithmetic appears : computing the day of the week a given date is.

Question 1. Assuming we’re on Monday, how do you compute the day we’ll be in 37 days
from now?

A simple way to do so is to number the days of the week from 0 to 6 starting at the day you’re
at : Monday. Every 7 days you get back on Monday, that’s something you know already. The
Euclidean division of 37 by 7 is written

37 = 5× 7 + 2.

We thus get 5 times to Monday before going on to Wednesday whose number is 2. Thus the
only number that matters in this question is 37 mod 7. This argument is general: any number
of days n after the first Monday one started with is going to get us back to n mod 7, which is
a number between 0 and 6.

Let’s add a more formal layer to get a better grasp on basic computations of week days.
We’re going to compute week days starting at the first day of our era following the Gregorian
calendar. January, 1-st 0001 was a Saturday, letW denote the set of indices of week days, thus

W = {0, 1, 2, 3, 4, 5, 6},

where 0 is a Saturday. We shall assume that number of days before and after January, 1-st
0001 is infinite5.

5Which is hardly conceivable going back and rather compromised going forward ...

November 27, 2018 7 B. DUDIN

Epita AFIT

Terminology. We’ll be calling date the number of days, before or after the first day of our era;
this is to avoid ambiguity with the day of the week we’re interested in computing.

Our main concern can be rephrased as:

Given a date d ∈ Z what is the day of the week d corresponds to?

We’ve already answered above question previously: one only needs to look for the re-
mainder of d modulo 7.

Remark 7. Be careful here about the fact that OCaml mod built-in function doesn’t give the
expected result if prefix (left) argument is negative. The OCaml mod function returns minus
remainder of absolute value of prefix argument if the latter is negative. This does not follow
in the integer division standard definition. The latter is the exact same definition you’ve seen
for the case of natural numbers, thus remainder is always non-negative.

The computations involved in detecting week days of a given date involve a number of
welcome compatibilities ; with respect to both addition and multiplication.

For instance, one could wonder if the 37-th day after Thursday (5) is the same as the
(37 mod 7)-th day after Thursday. The day we’re looking for is the 43-rd day after Saturday,
one can write

43 = 6× 7 + 1

which gives a Sunday. We mainly did the following computation:

(37 + 6) mod 7.

Trying out the computation (which corresponds to the previously suggested one):

((37 mod 7) + (6 mod 7)) mod 7

we find back same result. This is a general fact. Let d1 and d2 be two given dates. Both have
an integer division by 7 that can be written:

d1 = 7× q1 + r1 (9)
d2 = 7× q2 + r2 (10)

Summing these two equations one gets:

(d1 + d2) = 7× (q1 + q2) + (r1 + r2).

There is no guarantee that (r1 + r2) is smaller than 7. Looking into the integer division

(r1 + r2) = 7× s+ t

We get that
(d1 + d2) = 7× (q1 + q2 + s) + t

with t being non-negative and smaller than 7. The last two relations assert that

(r1 + r2) mod 7 = (d1 + d2) mod 7

and that is exactly what we wrote down previously in our particular example.
Same type of compatibilities hold for multiplying dates. Assume we’re looking at 3 times

the 32-nd day. This is the 96-th day, it is given by 96 mod 7 = 5, i.e. Thursday. This is the
exact same result as the one given by

November 27, 2018 8 B. DUDIN

Epita AFIT

((3 mod 7) * (32 mod 7)) mod 7

This is a general fact as well ; reusing equations 9 one can write:

d1d2 = 7× (7q1q2 + q2r1 + q1r2) + r1r2

without any guarantee on the fact r1r2 is non-negative and smaller than 7. Through the extra
division

r1r2 = 7× s+ t

we figure out the Euclidean division

d1d2 = 7× (7q1q2 + q2r1 + q1r2 + s) + t

which exactly states that
d1d2 mod 7 = r1r2 mod 7.

To sum things up:

• The day of the week of a given date d is the remainder of the Euclidean division of d by
7.

• The day of the week of the sum of two dates d1, d2 is the remainder modulo 7 of the sum
of both or equally the remainder of the sum of remainder of each.

• Previous bullet-point is also true in the case of multiplication. The remainder of mul-
tiplication of two dates d1 and d2 modulo 7 is the same as the remainder modulo 7 of
multiplication of both remainders.

The computations we’ve met here are a basic manifestation of more general properties and
constructions of central importance in arithmetic. They have a serious impact on integer
programming within computers.

4.2 The Ring Z/nZ
We shall not define formally what a ring is. It is enough to know this is a set for which
you have two binary operators called addition and multiplication that have the exact same
properties you’ve always been using when dealing with integers. The ring we’ll be defining next
has an underlying finite set. This is of major importance when you’re looking at things from
a machine perspective ; anything that lives in such rings should be – up to memory issues –
machine implementable.

Definition 4.1. Let n > 1 be a positive integer. The ring Z/nZ is the set

Z/nZ = {0, . . . , n− 1}

together with the two binary operators ⊕ and ⊗ defined in the following fashion: Given any
two elements x, y ∈ Z/nZ

x⊕ y = (x+ y) mod n (addition)

x⊗ y = (x× y) mod n. (multiplication)

Example 4.1. The simplest example is for n = 2. In that case Z/2Z = {0, 1}. Addition and
multiplication are simply given by the rules

⊕ 0 1
0 0 1
1 1 0

⊗ 0 1
0 0 0
1 0 1

November 27, 2018 9 B. DUDIN

Epita AFIT

Example 4.2. The case n = 3 is the set {0, 1, 2} given by the addition and multiplication
rules :

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⊗ 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

In practice we’re often looking at the projection of integers modulo a given positive integer.
This approach is represented by looking at the following simple map:

πn : Z −→ Z/nZ
x 7−→ x mod n

Example 4.3. The image of an element x ∈ Z by π2 tells whether x is either odd or even.
If π2(x) = 0 then x is even otherwise it is odd. The image of x by π3 being 0 says x can be
divided by 3. If π3(x) = 1 this means x is of the form 3k + 1 for some k ∈ Z.

Notation. It is standard to denote by x̄n the quantity πn(x) or x mod n. Depending on context
the index might be left out as well.

Many central questions in modern arithmetic theory are summed up by :

Let x be an integer whose remainders x̄n modulo an infinite number of positive integers
satisfy a property P . Does x also satisfy P?

Example 4.4. Let P be the property described by being smaller than 100. Let x be an integer,
looking at x̄n for n ≤ 100 doesn’t tell you anything about the fact x ≤ 100. Indeed, any number
has smaller remainder than 100 if taken modulo a smaller number than 100. Likewise if x̄101
is smaller than 100 that doesn’t ensure x is. For instance 102101 = 1. Some meditation would
get you to notice that if x ≤ 100 then all remainders against integers n ≥ 101 will always give
you x back. The converse is also true. If all remainders x̄n for n ≥ 101 always give you x back
then x ≤ 100.

Remark 8. The previous example is a dummy one, for a more accurate research question: ask!

The compatibilities we brought to light during section 4.1, regarding behaviour of addition
and multiplication with respect to modulo operations, are general and expressed by: Given
two integers x, y ∈ Z then

(x+ y)n = x̄n ⊕ ȳn (addition)

(xy)n = x̄n ⊗ ȳn. (multiplication)

Notation. In this line of work, notation is abused frequently. In many cases both ·̄ and index
are dropped. This is as well the case for ⊕ and ⊗ that are not standard notation, they are
simply replaced by + and −. In the following, we shall drop ⊕ and ⊗ all the time. Aside from
this case we either keep ·̄ and index or drop all but introduce the following notation: Given x,
y ∈ Z then equality

x̄n = ȳn

shall be written as
x ≡ y [n]

or even sometimes as
x ≡n y.

November 27, 2018 10 B. DUDIN

Epita AFIT

Equality here is replaced by ≡ and [n] is to indicate the fact we’re looking at remainders of
x and y modulo n, or equivalently at x̄n and ȳn in Z/nZ. Previous compatibilities are thus
written

x+ y ≡ x̄n + ȳn [n] (addition)

xy ≡ x̄nȳn [n] (multiplication)

4.3 Invertible Elements of Z/nZ
If you’re looking at addition and multiplication for rational or real numbers, you know that for
any non-zero number x ∈ R∗ there is another number y such that xy = 1. For instance if x = 2
then y = 0.5. This is in general not the case anymore for Z/nZ. Here is the multiplication
table for Z/4Z

⊗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

.

One can see that any element x except for 0 and 2 has a counter-part y such that xy ≡ 1 [n].
The point is that 2 is non-zero but doesn’t have any such counter-part, a behaviour that is
different from what you’re used to.

Definition 4.2. An element x ∈ Z/nZ is said to be invertible if there is y ∈ Z/nZ such that
xy ≡ 1 [n].

The element y is unique and called the inverse of x in Z/nZ.
Notation. The inverse of an invertible element x ∈ Z/nZ is written x−1. The set of invertible
elements of Z/nZ is denoted by (Z/nZ)×. The number of invertible elements of Z/nZ is written
ϕ(n) ; it is the cardinal of (Z/nZ)×. In the literature ϕ(n) is called the Euler number of n.

Let x be an invertible element in Z/nZ whose inverse is y. By definition this means
xy ≡ 1 [n]; more explicitly there is k ∈ Z such that

xy + kn = 1. (11)

Referring to Bézout Theorem this implies n and x are relatively prime. Conversely, if x and n
are relatively prime there is a relation of type 11, modulo n this shows x has an inverse given
by y.

Proposition 4.1. The set of invertible elements of Z/nZ is equivalently the set of elements in
{0, . . . , n− 1} relatively prime to n. This set is called the multiplicative group of Z/nZ.

Corollary 4.2. Given a prime number p all elements of {1, . . . , p− 1} are invertible, i.e.

(Z/pZ)× = {1, . . . , p− 1}.

Proof. Any non-zero integer that is not a multiple of p is relatively prime to p. That is in
particular the case of any non-zero element in Z/pZ.

Writing down a function testing whether a given integer modulo n is invertible is about
a proper use of the Bézout algorithm ; something we’re already familiar with. One can ease
the search a little though, by knowing a little more about the inner properties of elements in
(Z/nZ)×.

November 27, 2018 11 B. DUDIN

Epita AFIT

Proposition 4.3. Given two elements x, y that are invertible modulo n then xy is also invert-
ible modulo n.

Proof. Let x−1 and y−1 be the respective inverses of x and y. The product y−1x−1 is then the
inverse of xy.

As soon as one finds an invertible element then all multiplicative powers of that element
give other invertible elements.

Example 4.5. For example in the case of Z/5Z the multiplicative group is {1, 2, 3, 4}. The
powers of 1 don’t give much but 1. The powers of 2 modulo 5 span the set {1, 2, 3, 4}.

We’re not always as lucky as to find an integer whose power span the whole multiplicative
group, i.e. which enables us to recover all of its elements.

Example 4.6. In the case of Z/8Z the multiplicative group is {1, 3, 5, 7}. You can check
that the power of any element in (Z/8Z)× has square which is 1. Looking into powers of an
invertible element x here doesn’t give any other invertible element except for 1 if x 6= 1.

The subset of different elements one can generate by looking at powers of a given invertible
element in the multiplicative group is of high interest in much of the arithmetic modulo n. Such
subsets can measure the strength of an RSA private key. Valid public data for the ElGamal
cryptosystem is partially an element that spans the multiplicative group of a specific Z/nZ.
The next section is devoted to having a closer look at powers of invertible elements in Z/nZ.

4.4 Fermat’s Little Theorem

Definition 4.3. Let x be an invertible element in Z/nZ (thus an element in (Z/nZ)×). The
order of x is the smallest k ∈ N∗ such that xk ≡ 1 [n]. We write ordn(x) for the order of x in
n.

Example 4.7. In the case n = 8 the invertible elements of Z/8Z are 1, 3, 5, 7. The first is of
order 1 the latter of order 2.

Example 4.8. The multiplicative group of Z/9Z is given by the elements 1, 2, 4, 5, 7 and 8.
Respectively of orders 1, 6, 3, 6, 3 and 2.

The emphasized definite article in definition 4.3 suggests there is always one such smallest
positive integer being the order of x. This implicitly expresses the fact the set {k | xk ≡ 1 [n]}
is not empty. Though we tested this fact on two simple examples, we’ve shown no guarantee
this is the case in general until now.

Theorem 4.4. Let x be an invertible element in Z/nZ. Then xϕ(n) ≡ 1 [n].

Proof. To ease notation we write Gn for the multiplicative group (Z/nZ)×. The proof we’re
giving here is based on a very structural understanding of how an element of Gn acts on its
environment. Let mx be the map mx : Gn → Gn sending an element y ∈ Gn on xy. Taking
the example when n = 9 and x = 2 the map m2 has domain and target G9 = {1, 2, 4, 5, 7, 8}.
It sends the list of elements [1; 2; 4; 5; 7; 8] entry-wise to [2; 4; 8; 1; 5; 7]. Thus sends

1 → 2
2 → 4
4 → 8
5 → 1
7 → 5
8 → 7

.

November 27, 2018 12 B. DUDIN

Epita AFIT

You can check that this defines a bijection of G9 on itself ; this is something we call a permu-
tation. The image of m2 is equal here to G9. This observation is much more general: mx is a
bijection from Gn on itself.

To show mx is injective assume there are two elements y1 and y2 in Gn such that mx(y1) =
mx(y2). This means

xy1 ≡ xy2 [n].

By definition x is invertible, multiplying previous relation by x−1 gets y1 ≡ y2 [n]. To check mx

is surjective one can see that given any element y in Gn the element t = x−1y in Gn satisfies
mx(t) = y.

The fact that mx is bijective implies that we have an equality between the sets

{xy | y ∈ Gn} = {y | y ∈ Gn}

the product of all elements of right-hand and left-hand sets are equal (we have the same sets
on both sides). This is written

xϕ(n)
(∏

y∈Gn

y
)
≡
(∏

y∈Gn

y
)

[n].

The product of invertible elements is invertible, multiplying previous relation by its inverse we
get

xϕ(n) ≡ 1 [n],

which is what we expect.

Corollary 4.5 (Fermat’s Little Theorem). Let x be a non-zero element in Z/pZ, then

xp−1 ≡ 1 [p].

Proof. The set of invertible element of Z/pZ is exactly the set of its non-zero elements and
ϕ(p) = p− 1.

Remark 9. Fermat’s Little Theorem is also stated as : given any element x in Z/pZ we have
that xp ≡ x [p]. It is equivalent to previous statement. If x is invertible multiplying equation
by x−1 gives back 4.5. If x is not, it is zero and relation just says 0 ≡ 0 [p] which is indeed
true.

In the two examples 4.7 and 4.8 we have ϕ(8) = 4 and ϕ(9) = 6. The orders of invertible
elements in Z/8Z are all divisors of ϕ(8). That is the case as well for orders of invertibles of
Z/9Z. This fact is general.

Proposition 4.6. Let x be an invertible element in Z/nZ. An element m ∈ N∗ satisfies
xm ≡ 1 [n] if and only if it is a multiple of ordn(x).

Proof. Let k be the order of x modulo n. The Euclidean division of m by k gives the relation
m = kq + r where 0 ≤ r < k. We thus get

xm ≡ xkqxr [n] (12)
1 ≡ xr [n]. (13)

If r is positive then r would satisfy xr ≡ 1 [n] and be smaller than k, which is not possible by
definition of k (the smallest positive integer satisfying xk ≡ 1 [n]). Then r = 0 and m is indeed
a multiple of the order of x.

Corollary 4.7. The order of an invertible element in Z/nZ divides ϕ(n).

Proof. This is due to the fact xϕ(n) ≡ 1 [n] following 4.4.

November 27, 2018 13 B. DUDIN

Epita AFIT

4.5 Chinese Remainder Theorem

It is a standard practice in mathematics to try understanding an object by identifying it to
a composite of easier-to-understand sub-objects. This is also a philosophy one encounters in
computer science : this is more or less the principle of “divide and conquer” strategies. Not
to mention the fact software is mainly thought of as a series of components linked together
and each devoted to a given task. In the case of modular arithmetic one can decompose many
Z/nZ into cartesian products of smaller Z/mZ sets. This is what we’ll be going through in
this section.

Let m and n be two relatively prime integers bigger than 1. Let ψ be the map
ψ : Z/nmZ −→ Z/nZ× Z/mZ

x 7−→ (x̄n, x̄m)

keeping the remainder of x ∈ {0, . . . , nm − 1} modulo n and modulo m respectively as first
and second entry of a couple in Z/nZ× Z/mZ.
Example 4.9. Let’s consider the case (n,m) = (2, 3). The map ψ is one having domain Z/6Z
and target Z/2Z× Z/3Z. Here are the list of images of the 6 elements of Z/6Z by ψ:

0 → (0, 0)
1 → (1, 1)
2 → (0, 2)
3 → (1, 0)
4 → (0, 1)
5 → (1, 2)

You can first notice that this map is bijective. Thus Z/6Z contains as much information as
Z/2Z × Z/3Z. There is in fact more: the arithmetic operations on Z/6Z can be reflected on
Z/2Z×Z/3Z through ψ. Let us define addition and multiplication operators on Z/2Z×Z/3Z
in the following fashion: given (x1, x2) and (y1, y2) ∈ Z/2Z× Z/3Z we have

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) (addition)
(x1, x2)× (y1, y2) = (x1y1, x2y2). (multiplication)

These are called component-wise addition and multiplication. Here are the addition and mul-
tiplication tables for Z/6Z with usual operations and Z/2Z×Z/3Z with the operations we just
defined.

Z/6Z Z/2Z× Z/3Z

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

+ (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 0) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(1, 1) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2) (0, 0)
(0, 2) (0, 2) (1, 0) (0, 1) (1, 2) (0, 0) (1, 1)
(1, 0) (1, 0) (0, 1) (1, 2) (0, 0) (1, 1) (0, 2)
(0, 1) (0, 1) (1, 2) (0, 0) (1, 1) (0, 2) (1, 0)
(1, 2) (1, 2) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1)

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

× (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 1) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 2) (0, 0) (0, 2) (0, 1) (0, 0) (0, 2) (0, 1)
(1, 0) (0, 0) (1, 0) (0, 0) (1, 0) (0, 0) (1, 0)
(0, 1) (0, 0) (0, 1) (0, 2) (0, 0) (0, 1) (0, 2)
(1, 2) (0, 0) (1, 2) (0, 1) (1, 0) (0, 2) (1, 1)

November 27, 2018 14 B. DUDIN

Epita AFIT

We have placed an element x ∈ Z/6Z and its image ψ(x) ∈ Z/2Z× Z/3Z at same position of
respective tables. Looking into it you can check the two following facts: for every x, y ∈ Z/6Z
we have

ψ(x+ y) = ψ(x) + ψ(y) ψ(x× y) = ψ(x)× ψ(y).

To sum things up, ψ is here a bijection transforming arithmetic operations on domain into
compatible ones on the target. One can either make computations on the right column then
go left or the other way around.

The previous example is only an instance of what happens in general. This is summed up
in the Chinese Remainder Theorem we’re stating now.

Theorem 4.8. Let n, m be two positive integers n, m > 1 that are relatively prime. The map

ψ : Z/nmZ −→ Z/nZ× Z/mZ
x 7−→ (x̄n, x̄m)

is a bijective map such that for each x, y ∈ Z/nmZ we have the compatibilities

ψ(x+ y) = ψ(x) + ψ(y) (addition)
ψ(x× y) = ψ(x)× ψ(y). (multiplication)

Remark 10. Be careful about the fact that arithmetic operations in above compatibilities are
not defined in the same fashion on both sides of equality. The left part is addition as we
understand it in Z/nmZ, the second being component-wise in Z/nZ× Z/mZ.

Proof. Addition and multiplication compatibilities are independent from the fact that ψ would
be a bijection. Taking two elements x, y ∈ Z/nmZ then, by definition

ψ(x+ y) = ((x+ y)n, (x+ y)m) (14)

using compatibility of modulo to addition

ψ(x+ y) = (x̄n + ȳn, x̄m + ȳm) (15)

by definition of addition in Z/nZ× Z/mZ

ψ(x+ y) = (x̄n, ȳm) + (x̄n, ȳm) (16)

lastly, by definition of ψ

ψ(x+ y) = ψ(x) + ψ(y) (17)

The exact same reasoning applied to multiplication gives

ψ(x× y) = ψ(x)× ψ(y).

Let’s come to work on the surjective and injective aspects. The core reason for why ψ is
both surjective and injective is the relative primality of n and m. This result does in fact
extend to much broader contexts.

November 27, 2018 15 B. DUDIN

Epita AFIT

The map ψ is injective. Assume there are two elements x, y ∈ Z/nmZ having same image
by ψ, i.e. ψ(x) = ψ(y). This does equivalently mean that

x̄n ≡ ȳn [n]
x̄m ≡ ȳm [m]

Thus
(x− y)n ≡ 0 [n]

(x− y)m ≡ 0 [m]

and both n and m divide x− y. The Smallest Common Multiple of n and m does then divide
x− y. Since n ∧m = 1, that SCM is nm6. We thus get x ≡ y [nm] which is what we expect.

The map ψ is surjective. The surjective aspect can be deduced from the fact both domain
and target have same cardinal and the map is injective. As is always the case with any
computer scientist we’re interested in an explicit construction of inverse of ψ : a function φ
sending y = (y1, y2) ∈ Z/nZ×Z/mZ on x ∈ Z/nmZ such that ψ(x) = y. By hypothesis there
are integers u and v such that

un+ vm = 1.

Looking at this relation both modulo n and m we get that

vm ≡ 1 [n]
un ≡ 1 [m]

The integer x = y1vm+ y2un does then satisfy

y1vm+ y2un ≡ y1vm ≡ y1 [n]
y1vm+ y2un ≡ y2un ≡ y2 [m]

which is exactly saying ψ(x) = y. Thus φ is defined by

φ(y1, y2) = y1vm+ y2un [nm]

where v and u are previously defined integers coming from the Bézout relation, y1 ∈ {0, . . . , n−
1} and y2 ∈ {0, . . . ,m − 1}. To be accurate one would need to check that any other choice
(u′, v′) of Bézout coefficients would give the same map φ. Any such other choice can be written
as (u′, v′) = (u+ km, v − kn) for some k ∈ Z. But then the expression becomes

y1v
′m+ y2u

′n = y1(v − kn)m+ y2(u+ km)n (18)
= y1v + y2m+ (−y1k + y2k)mn (19)
≡ y1v + y2m [nm]. (20)

The choice of different Bézout coefficients gives indeed same inverse φ.

Example 4.10. Let’s look at a quick example to check for strategy to build up inverse element
of ψ. Take (n,m) = (4, 7) and consider the couple (2, 5) ∈ Z/4Z × Z/5Z. Following steps of
previous proof we first need to have Bézout coefficients assessing the fact 4 and 7 are relatively
prime. A quick computation gives

(−5)× 4 + 3× 7 = 1.7

The element
5× (−5)× 4 + 2× 3× 7 ≡ 26 [28]

has remainder modulo 4 which is 2 and one modulo 7 which is 5, i.e. ψ(26) = (2, 5).
6Gauss Lemma!
7These are not the only Bézout coefficients but the ones given by Euclid’s algorithm.

November 27, 2018 16 B. DUDIN

Epita AFIT

Corollary 4.9. Given an integer k > 1, let m1, . . . ,mk be a list of positive integers > 1 that
are pairwise relatively prime. Denote by m the product of m1 up to mk. The map

ψ : Z/mZ −→ Z/m1Z× · · · × Z/mkZ
x 7−→ (x̄m1 , . . . , x̄mk

)

is a bijection that is compatible to component-wise addition and multiplication on target.

Proof. We’ll be mainly giving outlines of proof in the following. Formalizing it properly would
take us astray.

Compatibility to pairwise addition and multiplication is tautological and stems from the
fact modulo operation is compatible to both addition and multiplication. Proof of bijective
aspect is algorithmic ; it is based on an inductive use of the Chinese Theorem approach for
building up an inverse map.

If we wanted to check map is injective we find ourselves in the exact same position as was
the case in the proof of 4.8. Two elements that have equal image have a difference that can be
divided by m1, . . ., mk. Since these are pairwise relatively prime it divides m. Thus equality
modulo m. This is again enough to show map is a bijection. The point being that both domain
and target have same cardinal.

Here is how building up inverse image of an element (y1, . . . , yk) goes : assume you have an
inverse image y1···j of (y1, . . . , yj) for 1 ≥ j ≥ k in Z/(m1 · · ·mj)Z. Then an inverse image of
(y1, . . . , yj, yj+1) in Z/(m1 · · ·mj+1)Z is

y1···jumj+1 + yj+1v(m1 · · ·mj)

where u and v are Bézout coefficients respectively for mj+1 and m1 · · ·mj.

5 Input of the CRT

Core questions in arithmetic are about identifying prime and invertible numbers. Aim is then
to be able to factor a given non-invertible number into its prime components. Factoring is
a heavy process ; the reason why RSA ciphering method is secure enough when having high
enough prime numbers involved. Another type of difficulty is related to the fact that looking
at powers of big enough integers has a high toll on computations. Many standard ciphering
methods are based on taking powers of such high enough numbers.

The Chinese Remainder Theorem can help out breaking into smaller problems each of the
previous issues. This is already something we can imagine for the case of powers of an integer:
Let’s assume we’re working with integers smaller than a fixed given integer M . Let

M = M1M2 · · ·Mh

where Mjs are pairwise relatively prime integers. The CRT states that

Z/MZ ' Z/M1Z× · · · × Z/MhZ

where ' is a notation to specify that there is a bijective map from one to the other, which
is compatible to arithmetic operations ; this is what we call an isomorphism. Given non-
negative integers x and k such that xk is smaller than M then one can compute xk by looking
at the k-power of each component of

(x̄M1 , x̄M2 , . . . , x̄Mh
)

then building up inverse image through the CRT map. The fact each single computation is
quicker on the right-hand side is related to the fact that factors are smaller, since they’re
constants of the system one might have computed their Euler numbers and thus make use of
simplifications (integer divisions) to compute these powers.

November 27, 2018 17 B. DUDIN

Epita AFIT

Remark 11. Notice that ifM is chosen prime or power of a prime, such strategy does not make
sense. The CRT doesn’t give any decomposition in this case.

The previous approach is the standard one for the use of the CRT: We’re willing to make a
specific check or computation in Z/MZ, we look at image of data in Z/M1Z×· · ·Z/MhZ make
quicker equivalent computations component-wise then get back output results on Z/MZ.

5.1 Computing Invertibles

Let’s look back at the previous example of Z/6Z. Following the CRT we have an isomorphism
between Z/6Z and Z/2Z×Z/3Z given by the map the output of which is composed of reduction
modulo 2 and 3 of input.

Z/6Z Z/2Z× Z/3Z
0
1
2
3
4
5

0 1
0 (0, 0) (0, 1)
1 (1, 0) (1, 1)
2 (2, 0) (2, 1)

The invertible elements in Z/6Z are the shaded ones. Their image in Z/2Z × Z/3Z are the
shaded cells corresponding to (1, 1) and (2, 1). In Z/6Z the inverse of 1 is itself and so is the case
for 5. Multiplying (1, 1) and (2, 1) each one by itself we get (1, 1) for first and (4, 1) = (1, 1) for
second. Thus, for each element x of either of them there is an element y such that xy = (1, 1).
In a sense we’re saying that both elements (1, 1) and (2, 1) are invertible in Z/2Z×Z/3Z. The
element (1, 1) replaces in this context the element 1 ∈ Z/6Z. It is called the neutral element
of Z/2Z × Z/3Z since multiplication of any element z ∈ Z/2Z × Z/6Z by (1, 1) gives back z.
Rephrasing this remark one can say that invertible elements in Z/6Z correspond to invertible
ones in Z/2Z× Z/3Z.

The element of a product Z/M1Z × · · · × Z/MhZ only composed of entries equal to 1 is
called the neutral element of that product. The multiplication of any element z by (1, . . . , 1) is
equal to z. An element x ∈ Z/M1Z×· · ·×Z/MhZ is said to be invertible if there is an element
y such that xy = (1, . . . , 1). These definitions generalize the ones we’ve seen for Z/nZ.

Proposition 5.1. An element x ∈ Z/MZ is invertible iff its image ψ(x) by the CRT map is
so.

Proof. Let x be an invertible element in Z/MZ which is invertible. By definition, there is
y ∈ Z/MZ such that xy ≡ 1 [M]. Taking image by the CRT map ψ of both hand-sides of
equation we get

ψ(xy) = ψ(x)ψ(y) = (1, . . . , 1)

which does exactly say that any invertible element x of Z/MZ is sent on an invertible one of
Z/M1Z× · · · × Z/MhZ.
Conversely let x be an element in Z/MZ such that ψ(x) is invertible in Z/M1Z×· · ·×Z/MhZ.
By definition there is ȳ ∈ Z/M1 × · · · × Z/MhZ such that ψ(x)ȳ = (1, . . . , 1). Since ψ is an
isomorphism, there is y ∈ Z/MZ such that ψ(y) = ȳ. We can thus write that

ψ(1) = (1, . . . , 1) = ψ(x)ψ(y) = ψ(xy).

Applying ψ−1 at extremities of the above sequence of equalities we get xy ≡ 1 [M].

November 27, 2018 18 B. DUDIN

Epita AFIT

Corollary 5.2. The CRT map ψ defines a bijection

ψ× : (Z/MZ)× −→ (Z/M1 × · · · × Z/MhZ)×

compatible to multiplication. It is defined as the h-tuple of the reductions modulo Mi of the
input ; as is the case for ψ.

In order to compute inverse of element x in Z/MZ one can

• compute image (x̄1, . . . , x̄h) of x by the CRT map in Z/M1 × · · · × Z/MhZ;

• find inverse ȳi of each element xi in Z/MiZ if any;

• if previous step doesn’t go through x wasn’t invertible, otherwise compute inverse y by
CRT map of (ȳ1, . . . , ȳh);

• computed y is inverse of x.

5.2 Factoring Integers

With a little more care, the previous divide and conquer strategy might be fruitful to factor
integers smaller than M . Let’s first check the simple example M = 15. The CRT claims the
CRT map ψ gives an isomorphism

Z/15Z ' Z/3Z× Z/5Z.

On the left-hand side of isomorphism we get the decomposition 14 = 2 × 7. Taking image of
both sides of inequality by ψ we get the equation (2, 4) = (2, 2) × (1, 2). Which one can still
write as

ψ(14) = (2, 4) = (2× 1, 2× 2) = (2, 2)× (1, 2) = ψ(2)× ψ(7).

It does suggests the idea that factoring 14 is about factoring each one of the entries of its image
under the CRT map, then rebuilding inverse images of each factor using the CRT map. For
this to make sense one would first need each factor to have an inverse image by the CRT map
that is smaller than the integer we’re expecting to factor. For instance if you take 12 its image
in Z/3Z×Z/5Z is (0, 2) which, for instance, is the product of (0, 4) and (0, 3). Now (0, 4) has
inverse image by the CRT map which is 9 and (0, 3) has such inverse given by 3. The product
of 9 by 3 does give 12 only modulo 15 and is not an integer decomposition of 12. Notice that
the previous decomposition of (0, 2) is not unique, another decomposition could have given a
different output. An even more striking example is the one taken with 5. Its image by under
the CRT map is (2, 0) whose the product of (2, 0) and (1, 0). Their respective images are 5 and
10, the product of which is indeed 5 modulo 15, but certainly not a non-trivial decomposition
of the prime 5 in Z.

Rather than giving a complete understanding of this phenomenon as is, let’s have a look at
it through the forceful search for factors. Let’s consider we’re looking for a factor of an integer
m smaller than M . One naive but valid way to do so is to go through all integers from 2 up
to
√
M , testing for divisibility. Equivalently we can go through integers k starting at 2 and

adding 1 till we either find a divisor of m or get k2 > m. On the right-hand of the CRT map,
i.e. in Z/M1Z× · · ·Z/MhZ, this is equivalently given by:

1. Let κ = (2̄M1 , . . . , 2̄Mh
).

2. Loop as long as κ has a component whose square is bigger than corresponding component
of ψ(m).

November 27, 2018 19 B. DUDIN

Epita AFIT

3. Test whether κ divides ψ(m) component-wise;

• if not increment κ by (1, . . . , 1) and loop back
• else inverse image k of κ by the CRT map is a factor of m.

Remark 12. In case m is invertible and can be factored by k then co-factor of m by k is mk−1.
Otherwise there is no unique co-factor. This is the case above for 12 ≡ 3× 9 ≡ 3× 4 [15].

6 Ciphering : An Ersatz

Ciphering is the act of transforming a message into an unintelligible one except for the recipient.
It does involve a ciphering procedure and a deciphering one. From an abstract perspective,
letting M be the set of messages and C the set of encrypted messages, a ciphering method
involves two maps c :M→ C and d : C →M such that d ◦ c = idM. The sender has to know
of c and the recipient of d. There are a couple of properties we expect from a cipher:

• Images of the methods c and d are easy and quick to compute;

• The methods c and d are hard to figure out if you’re only having a subset (all) of encrypted
messages C.

Remark 13. Everything in a computer being sequences of numbers the sets of messagesM and
encrypted ones C shall be mostly identified with integer types. Transforming a human readable
message into an integer type is about encoding characters.

6.1 Symmetric Ciphers

The simplest symmetric cipher is the one know as Caesar’s cipher. Take the alphabet and shift
the position of its letters by a given number as pictured in 1. The ciphering map c in this case

a b c d e f g h i j k l m n o p q r s t u v w x y z
f g h i j k l m n o p q r s t u v w x y z a b c d e

Figure 1: Alphabet shift by 6 for Caesar’s cipher

is the one read up-down and sending a to f , b to g etc. Ciphering hello is thus given by

c(hello) = mjqqt

applying image of map character-wise. To get back original message you simply need to read
previous table bottom-up. The map d reads f goes to a, g goes to b, etc. Knowing d or c is
about knowing the same table but reading it differently. Both sender and recipient of message
have equivalent knowledge of cryptosystem. Having d is enough to have c and vice-versa.
That’s the reason why such a cryptosystem is said to be symmetric, knowledge of sender and
recipient of the encryption and decryption data are equivalent.

Putting character encoding on the side, the Caesar cipher principle can be summed up in
the following form : give yourself an integer n > 1 modulo which we’ll be working, a Caesar
cipher is then about the choice of an integer k ∈ Z corresponding to the shift. The map
c : Z/nZ → Z/nZ is given by c(x) = x + k. Its inverse is simply given by the expression
d(x) = x− k.
Terminology. The previous encryption system is wholly determined by the integer k. When an
encryption is determined by such numerical data that numerical data is often called a key.

November 27, 2018 20 B. DUDIN

Epita AFIT

Question 2. How can you generalize the previous encryption system?

Question 3. Can you think of a way to discover (we say break) a Caesar cipher, if you
have enough alphabetical ciphered messages?

6.2 Asymmetric Ciphers

An asymmetric cryptosystem, in contrast with the previous case, is a cryptosystem where
sender has as hard a time as any external party to know of the deciphering method. It involves
the release of public data by the recipient allowing any party to send them a ciphered message,
c is then publicly accessible to all. The recipient is the only one to have the deciphering method
d. The main point is to build up a system in such a way that d is hard to figure out only having
c.

6.2.1 RSA Cryptosystem

The RSA cryptosystem is based on the fact it takes time to factor an integer into its prime
factors. In the case at hand this is going to be translated by : it is too time-consuming to
extract a prime factor from a number which is a product of two huge prime numbers.

The RSA cryptosystem involves both public and private keys. The first is needed to build
c and is available to all, the second is only known by the recipients who make their public key
available to all.

To build both data one needs two (distinct) huge prime numbers p and q as well as an
invertible element e in Z/ϕ(n)Z whose inverse is written d. We shall denote by n the product
n = pq.

Public key This is the data (n, e).

Private key This is the data d.

Before getting into the ciphering and deciphering methods let’s take a minute to explain how
to generate such keys. We’ve seen in 5 the multiplicative group of Z/nZ is of cardinal

ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1).

To find an invertible element e ∈ Z/ϕ(n)Z we need to look for an element e which is coprime
to (p− 1)(q − 1).

Given public and private data for an RSA cryptosystem:

Ciphering Given a message x ∈ Z/nZ the corresponding ciphered message is xe [n]. The
map c is simply given by the expression c(x) ≡ xe [n].

Deciphering To decipher a message y ∈ Z/nZ one looks at yd [n]. The deciphering map is
simply given by d(y) ≡ yd [n].

Notice both ciphering and deciphering methods are about taking exponents of an integer mod-
ulo n. Modular fast exponentiation is easy and quick to compute ; one of the requirements to
be a usable cryptosystem.

Proposition 6.1. Previous data do indeed define a cryptosystem, i.e. d ◦ c = id.

November 27, 2018 21 B. DUDIN

Epita AFIT

Proof. Assume first we’re given an invertible element x ∈ (Z/nZ)×. We’re willing to prove
that, for any such x

d
(
c(x)

)
≡ d
(
xe
)
≡ xed ≡ x [n].

By definition ed ≡ 1 [ϕ(n)]. It means there is k ∈ Z such that

ed+ kϕ(n) = 1.

Following 4.4

xed ≡ x1−kϕ(n) ≡ x×
(
xϕ(n)

)−k
≡ x [n].

Notice here that in case k is positive then we’re looking at the negative power of 1 which has
to be understood as the power of the inverse of 1 (i.e. 1).
Assume x is not invertible anymore. Using the Chinese remainder theorem we have that

(Z/nZ)× = (Z/pZ)× × (Z/qZ)× .

Since invertibles of Z/pZ and Z/qZ are all the non-zero elements, we get that non-invertible
elements modulo n correspond to couples having the form (0, x2) for x2 ∈ Z/qZ or (x1, 0) for
x1 ∈ Z/pZ. If both entries are 0 then expected result is indeed satisfied. Let’s assume that
none of x1 nor x2 are 0. Using previous notation in the first case we get that

(0, x2)
ed ≡ (0, x

1−kϕ(p)ϕ(q)
2) ≡

(
0, x2 ×

(
x
ϕ(q)
2

)−kϕ(p)) ≡ (0, x2) [n]

which is what we expect. Symmetric case with x1 is checked in a similar fashion.

6.2.2 El Gamal Cryptosystem

The El Gamal Cryptosystem is based on the difficulty of solving equations of the type ak ≡ b [n]
for a given fixed a, b and n, k being the variable of the equation. This is called the discrete
logarithm problem8. It is a little more challenging than the RSA to write down.

El Gamal cryptosystem lives within publicly available data (p, g):

• p is a prime number modulo which the logarithm problem is difficult to solve.

• g is an element modulo p having high enough order9.

Such data can be generated by the recipient or any other trusted party. Having such public
data available the recipient chooses a private key a ∈ Z and computes and makes available
their public key A = ga [p]. Thus having public data (p, q)

Private key (Nearly) Any (big enough) chosen integer a.

Public key The integer A = ga modulo p.

Given a prime number p for which the logarithm problem is difficult enough, finding g is first
about testing for numbers having high enough orders. The order of an element g is a divisor
of p − 1. For example if we take a prime number p = 2q + 1 where q is still prime, then the
order of g is either 1, 2, q or 2q. Thus if g2 is not 1 modulo p, then g must be of order q or 2q
which can be high enough.

Given public data and an El Gamal public key:
8You’re invited to ask your maths teachers for the reason why such question is related to logarithms.
9Recommended to be prime.

November 27, 2018 22 B. DUDIN

Epita AFIT

Ciphering Given a message x ∈ Z/pZ, sender generates an ephemeral10 random integer k.
The ciphered message is the couple (c1, c2) where c1 = gk and c2 = xAk. The map c is
then defined by the expression c(x) = (gk, xAk) for a given ephemeral key k.

Deciphering To decipher a message (y1, y2) ∈ Z/pZ recipient computes (ya1)−1 y2. The map
d is defined by d(y1, y2) = (ya1)−1y2.

Proposition 6.2. Previous data do indeed define a cryptosystem, i.e. d ◦ c = id.

Proof. Using previous notation our aim is to prove that

(ca1)
−1 c2 =

(
gak
)−1

xAk = x

The first equality is nothing but the definition. For the second one, by construction

ga ≡ A [p]

thus (
gak
)−1

Akx ≡ x [p]

and that is our expected result.

10Only to be used once!

November 27, 2018 23 B. DUDIN

	Introduction
	How To Read This Document
	Integer Arithmetic
	Euclidean Division
	Primality
	Euclid's Algorithm
	Bézout Theorem

	Modular Arithmetic
	Day of Week
	The Ring Z/nZ
	Invertible Elements of Z/nZ
	Fermat's Little Theorem
	Chinese Remainder Theorem

	Input of the CRT
	Computing Invertibles
	Factoring Integers

	Ciphering : An Ersatz
	Symmetric Ciphers
	Asymmetric Ciphers
	RSA Cryptosystem
	El Gamal Cryptosystem

