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Arithmetic for IT

Résumé

Ce document est la référence principale pour le contenu du projet AFIT (Arithmetic
for IT). Ce projet vise à générer du chiffrement de données à l’aide des algorithmes RSA et
ElGamal, dans un but pédagogique. Ce faisant, les étudiants devront assimiler les notions
élémentaires d’arithmétique nécessaires pour générer et manipuler de tels systèmes de
cryptage.
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1 Introduction

L’arithmétique est une branche des mathématiques consistant en l’étude des “nom-
bres”, et plus particulièrement des propriétés des opérations traditionnelles – addi-
tion, soustraction, multiplication et division 1.

En arithmétique des nombres entiers, la divisibilité est une notion au centre de nombreuses
questions : est-ce que deux nombres donnés sont multiples l’un de l’autre ? Y a-t-il des nombres
spécifiques qui n’ont aucun diviseur non trivial ? Peut-on décomposer un entier donné comme un
produit d’entiers plus simples (voire le plus simples possible) ? Vous connaissez déjà la réponses
à certaines de ces questions. Les nombres qui ne peuvent être divisés que par eux-mêmes, leur
opposé ou ±1 sont appelés nombres premiers. Ainsi, tout entier peut se décomposer de
manière unique (si ce n’est l’ordre) comme un produit de nombres premiers.

Ces questions, simples en apparence, sont au cœur des différents usages de l’arithmétique
en informatique. Même en exceptant le fait que les ordinateurs sont des calculateurs d’entiers,
les questions de divisibilité sont au centre des systèmes de chiffrement permettant un échange
d’informations sécurisé entre deux parties ; en supposant qu’une troisième partie ait accès à
l’information échangée, il sera encore trop difficile de la déchiffrer pour retrouver le message
initial.

L’algorithme de chiffrement le plus connu, RSA 2, se base sur le fait que factoriser un
nombre qui est le produit de deux nombres premiers est une question difficile et qui nécessite
beaucoup de ressources, en temps comme en espace. En revanche, calculer des puissances
d’entiers modulo un entier fixé prend beaucoup moins de temps.

Le but de ce projet est de vous faire parcourir l’arithmétique nécessaire pour essayer de
générer des systèmes de chiffrement d’une taille raisonnable. Cependant ne vous y trompez
pas ; nous serons encore relativement loin des implémentations d’algorithmes de
chiffrement utilisées en réalité.

2 Guide de lecture

Ce document doit servir de référence mathématique pour un projet de programmation
nécessitant des notions élémentaires d’arithmétique modulaire. Il contient des exemples, preuves
et discussions permettant de comprendre la raison fondamentale pour laquelle les résultats
mathématiques utilisés sont énoncés tels quels et pas autrement. Tout ce que vous lirez ici s’y
trouve pour une (bonne) raison, la moindre d’entre toutes étant de mettre un peu de sens dans
un certain nombre d’énoncés apparemment inattendus.

Ceci dit, il n’y a pas besoin de posséder une connaissance en profondeur de tous les aspects
traités dans ce document pour pouvoir rendre un travail satisfaisant sur ce projet AFIT.
N’hésitez pas à chercher de la documentation externe ; ce document doit servir de
trame pour vos propres recherches. Si vous trouvez des références qui vous permettent de
mieux comprendre le sujet et les attentes de votre projet, servez-vous en !

Voici une liste des sujets abordés, classés par priorité (de la plus haute à la plus basse).
C’est un bon ordre de lecture indicatif.

— La section 3 concerne des connaissances de base en arithmétique et doit être complète-
ment maîtrisée ; une partie de cette section reformule les propriétés et résultats vus en
cours.

— La section 4, jusqu’à la sous-section 4.4 incluse est d’une importance capitale si vous
voulez être capable d’écrire vos premiers systèmes de chiffrement.

1. https://en.wikipedia.org/wiki/Arithmetic (traduit de l’anglais).
2. d’après les initiales de ses inventeurs : Rivest, Shamir et Adleman.
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— La section 6 est le but principal de ce projet AFIT. Même si l’on mettra plus l’accent
sur l’algorithme RSA, on attend de vous que vous puissiez implémenter les deux.

— Les sections 4.5 et 5 représentent des défis un peu plus exigeants, il vous est conseillé de
les laisser de côté tant que vos implémentations des cryptosystèmes RSA et ElGamal
n’ont pas été testées avec succès.

3 Arithmétique des entiers

Cette section présente un rappel succinct des sujets abordés en arithmétique élémentaire.
Des primitives OCaml seront données pour les opérations basiques d’arithmétique que vous
utiliserez dans vos implémentations.

Hypothèse 3.1. Nos énoncés se focaliseront sur les résultats concernant les entiers naturels.
Tous peuvent être étendus au cas des entiers relatifs, mais nous n’en aurons pas besoin ici.

3.1 Division euclidienne

Définition 3.1. Si l’on considère un couple d’entiers naturels (n, p), on dit que p divise n, ce
que l’on note par p | n, s’il existe un entier k ∈ N tel que n = kp.

Remarque 1. Un entier n est dit pair si 2 | n, sinon il est dit impair.

Remarque 2. Tout entier divise 0. En effet, pour tout n ∈ N on peut écrire 0 = 0× n.
Si l’on prend deux entiers naturels au hasard, les chances que l’un soit diviseur de l’autre

sont faibles. Il est cependant possible de pallier le manque de divisibilité par l’opération appelée
division euclidienne.

Proposition 3.2. Pour tout couple d’entiers naturels (a, b) ∈ N×N∗, il existe un unique couple
(q, r) d’entiers naturels vérifiant

a = bq + r avec 0 ≤ r < b.

Terminologie. Le premier élément du couple (q, r) est appelé quotient de a par b, le second est
appelé reste dans la division euclidienne de a par b. On l’abrège aussi en reste de a modulo
b.

Démonstration. La proposition précédente contient en fait deux résultats, l’un concernant l’uni-
cité, l’autre l’existence.
Supposons qu’il existe deux couples (q, r) et (q′, r′) vérifiant la propriété ; alors

bq + r = bq′ + r′ ⇒ b(q − q′) = r′ − r.

Maintenant, le terme de droite appartient à l’intervalle entier J−(b − 1); b − 1K, cependant ce
doit être un multiple de b. Ce ne peut donc être que 0. Ainsi r = r′, d’où q = q′.
L’existence est basée sur l’algorithme suivant :

— Si 0 ≤ a < b alors (0, a) vérifie la propriété
— Sinon, on ajoute 1 au quotient puis on examine la division euclidienne de a− b par b.

Cet algorithme se termine en un nombre fini d’étapes à cause d’une propriété structurelle de
N : toute partie non vide de N admet un élément minimal. Il faut donc montrer que l’ensemble
{q ∈ N | a − bq < b} n’est pas vide. L’intuition semble indiquer que c’est bien le cas, puisque
le membre de gauche de la condition peut être rendu aussi négatif que l’on veut. C’est en
effet vrai, mais cela vient d’un fait important que nous n’avons pas montré. Sachant qu’il est
non vide, il admet un élément minimal q∗. Pour q∗ l’expression a − bq∗ ne peut donc qu’être
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positive. En effet, comme q∗ est le plus petit élément vérifiant a−bq∗ < b alors a−b(q∗−1) ≥ b.
Remarquez que la dernière inégalité est obtenue en ajoutant b au membre de gauche. Ainsi,
les deux inégalités ne peuvent pas être vraies simultanément si a − bq∗ n’est pas positif, car
sinon, en ajoutant b au membre de gauche on ne pourrait pas obtenir un résultat plus grand
que b.

En OCaml il n’y a pas de primitive qui calcule une division euclidienne d’un seul coup, mais
deux opérateurs infixes qui calculent respectivement le quotient et le reste : / et mod.

Remarque 3. En utilisant la caractérisation donnée par la division euclidienne, “b | a” équivaut
à “ le reste dans la division euclidienne de a par b est 0”. Ainsi, pour tester si un nombre a est
un multiple de b en OCaml on écrit :

let est_divisible a b = (a mod b = 0) ;;

3.2 Primalité

Définition 3.2. Un nombre naturel strictement supérieur à 1 est dit premier s’il n’admet
comme diviseurs (positifs) que 1 et lui-même.

Vérifier si un nombre donné n est premier est un problème difficile ; il n’y a pas d’autre option
que de parcourir la liste des entiers naturels inférieurs et de tester la divisibilité. En réalité
il suffit de s’arrêter à b

√
nc ; en effet, si k | n alors n/k divise lui aussi n. Si l’on écrit les

couples (k, n/k) de diviseurs de n on voit qu’à partir de
√
n on obtient les couples symétriques,

c’est-à-dire dont les entrées sont dans l’ordre inverse. Par exemple, pour les diviseurs de 36 on
obtient

(1, 36) (36, 1)
(2, 18) (18, 2)
(4, 9) (9, 4)
(6, 6)

L’importance des nombres premiers apparaît grâce au résultat fondamental suivant :

Théorème 3.3. Tout nombre naturel non nul 3 n peut être décomposé en un produit de nombres
premiers. Cette décomposition est unique si l’on ne tient pas compte de l’ordre des termes.

Terminologie. Un nombre premier qui apparaît dans la décomposition de n est appelé facteur
de n. On parle ainsi souvent de “décomposition en facteurs premiers”.

Ce théorème énonce grosso modo qu’il suffit de connaître les nombres premiers pour com-
prendre l’architecture des entiers naturels. Le fait est que générer des nombres premiers d’une
part, reconnaître si un nombre est premier d’autre part, sont des problèmes relativement com-
pliqués. On peut se consoler en considérant un problème plus simple à résoudre, celui de savoir
si deux entiers naturels choisis ont des facteurs premiers en commun.

Définition 3.3. Deux entiers naturels non nuls sont dits premiers entre eux s’ils n’ont
aucun facteur premier en commun.

Pour résoudre le problème que nous venons d’introduire, nous allons définir un nouveau
concept : le PGCD de deux entiers.

Définition 3.4. Le PGCD (Plus Grand Commun Diviseur) de deux entiers non nuls a et b est
le plus grand entier d vérifiant d | a et d | b.

3. cela inclut donc 1 que l’on peut écrire comme un produit vide. Pour rappel, un produit vide représente
l’élément neutre de la multiplication, c’est-à-dire 1.
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Avant d’aller plus loin, il reste un point à clarifier : pourquoi un tel entier existerait-il bien ?
— 1 vérifie toujours les deux propriétés, ce qui signifie que l’ensemble des entiers naturels

vérifiant ces deux propriétés est non vide.
— Tout entier vérifiant ces propriétés est par ailleurs inférieur à min{|a|, |b|}, ce qui im-

plique que l’ensemble est majoré. Ce qui nous ramène à la propriété fondamentale de N
selon laquelle toute partie non vide et majorée de N admet un élément maximum.

Notation. Le PGCD de deux entiers naturels non nuls a et b est noté a ∧ b.
Proposition 3.4. Deux entiers naturels non nuls a et b sont premiers entre eux si et seulement
si a ∧ b = 1.

3.3 Algorithme d’Euclide

Cet algorithme est crucial pour tout ce qui concerne les applications de l’arithmétique en
informatique. C’est grâce à lui notamment que l’on peut générer des clés publiques et privées
pour l’algorithme RSA, ou encore que l’on peut paralléliser les calculs d’entiers.

L’idée de cet algorithme se base sur la remarque suivante : si a et b sont deux entiers naturels
non nuls, leur division euclidienne donne un couple (q, r) d’entiers naturels tels que

a = bq + r 0 ≤ r < b. (1)

Si d divise a et b alors il divise aussi a− bq ; si a = kd et b = `d,

a− bq = kd− q`d = (k − q`)d.

Ainsi, d divise r. Cela est vrai pour n’importe quel diviseur commun de a et b, et plus parti-
culièrement pour leur PGCD. Supposoons alors que l’on répète ce procédé : en notant r0 = a,
r1 = b, q1 = q et r2 = r, l’équation (1) devient

r0 = q1r1 + r2 0 ≤ r2 < r1 (2)

où chaque diviseur de r0 et r1 est également un diviseur de r2. En itérant

qn+1 = rn/rn+1

rn+2 = rn mod rn+1

on obtient une suite de relations via divisions euclidiennes successives
r0 = q1r1 + r2 0 ≤ r2 < r1
r1 = q2r2 + r3 0 ≤ r3 < r2
...

...
...

...
...

...
rn−1 = qnrn + rn+1 0 ≤ rn+1 < rn

À chaque niveau de ce système d’équations, tout diviseur commun de rn+1 et rn est un diviseur
de rn+2. De plus, à chaque niveau le reste rn est un entier strictement inférieur au reste précédent
– à moins que celui-ci ne soit déjà 0. Tous les restes obtenus sont des entiers positifs, il y a
donc nécessairement une étape à laquelle on atteint 0. Notons ` l’indice du dernier reste non
nul dans la suite précédente. On a alors

r0 = q1r1 + r2 0 ≤ r2 < r1
r1 = q2r2 + r3 0 ≤ r3 < r2
...

...
...

...
...

...
rn−1 = qnrn + rn+1 0 ≤ rn+1 < rn
...

...
...

...
...

...
r`−2 = q`−1r`−1 + r` 0 ≤ r` < r`−1
r`−1 = q`r`

(3)
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Regardons ces équations de bas en haut. Le dernier reste non nul r` divise r`−1. D’après la
ligne précédente, il doit aussi diviser r`−2. En remontant ainsi toutes les équations, on se rend
compte que r` divise r0 et r1, c’est-à-dire a et b. En conséquence 4, r` | a ∧ b. Si l’on descend le
système d’équations maintenant, on voit vite par récurrence que tout diviseur d commun à r0
et r1 divise aussi r`, c’est donc le cas pour a ∧ b. On obtient donc a ∧ b | r` et vice versa ; ainsi
r` = a ∧ b.

Proposition 3.5. Le dernier reste non nul obtenu par l’algorithme précédent est le PGCD des
deux termes de départ.

Remarque 4. Il est légitime de se demander combien de divisions euclidiennes successives on doit
effectuer au maximum pour obtenir le PGCD de deux entiers naturels. Un majorant évident
est b, la suite (rn) des restes étant strictement décroissante de premier terme b. Il existe en fait
une bien meilleure 5 approximation supérieure, qui est 2 log2(b) + 2. Il n’est pas nécessaire de
comprendre comment obtenir ce résultat, il donne cependant une bonne idée de la vitesse de
l’algorithme d’Euclide.

Remarque 5. Déterminer si deux entiers non nuls sont premiers entre eux revient à exécuter
l’algorithme d’Euclide et à trouver 1 comme dernier reste non nul.

3.4 Théorème de Bézout

Cette sectionest dédiée au théorème de Bézout, qui énonce l’existence d’une combinaison
diophantienne 6 de deux entiers donnés égale à leur PGCD ; c’est-à-dire que le PGCD de deux
nombres peut s’écrire comme somme (différence) de multiples entiers de ces deux nombres.

Théorème 3.6. Pour tout couple (a, b) d’entiers naturels non nuls, il existe 7 un couple d’en-
tiers relatifs (u, v) vérifiant

ua+ vb = a ∧ b.

Terminologie. De tels entiers u et v sont appelés coefficients de Bézout associés à a et b.

Démonstration. La preuve est constructive et basée sur l’algorithme d’Euclide. Elle consiste
essentiellement en une réécriture des équations 3. En isolant à droite les restes des divisions
successives on obtient

a − q1b = r2
b − q2r2 = r3
...

...
...

...
...

r`−2 − q`−1r`−1 = a ∧ b

(4)

Si l’on parcourt ce système en remontant, on voit qu’il est à chaque fois possible d’exprimer les
restes en fonctions des deux restes précédents ; en utilisant cette propriété de manière transitive
on peut donc exprimer tous les restes en fonction de a and b. Cela peut également être montré

4. En réalité, on n’a pas encore expliqué que tout diviseur commun divise le PGCD. Ceci dit, même sans
utiliser cette propriété, on obtient r` ≤ a∧ b, ce qui suffit pour cette preuve : au lieu de conclure à l’égalité par
divisibilité réciproque, on utilise des inégalités réciproques.

5. on peut même (théorème de Lamé) obtenir logϕ(b) soit
ln(b)

ln(ϕ)
, où ϕ désigne le nombre d’or ; cela correspond

à un peu moins de 5 fois le nombre de chiffres de b en base 10. L’approximation donnée n’est pas si mauvaise

puisque cela revient à un peu moins de
3

2
log2(b). Cette complexité ne tient pas compte des étapes de conclusion,

d’où le +2 dans la formule donnée.
6. ou combinaison entière
7. un tel couple n’est jamais unique
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en descendant par une récurrence finie. Voici une manière un peu plus visuelle de le constater 8.
Regardez les trois équations qui suivent, dont la dernière est la première équation de notre
algorithme 4 :

1× a − 0× b = r0
0× a − 1× b = r1
1× a − q1 × b = r2

(5)

Remarquez que l’on obtient la dernière équation en ôtant q1 fois la seconde à la première. En
fait, ce schéma se propage jusqu’à ce que le PGCD apparaisse dans le membre de droite de
l’équation ; par exemple, pour la division euclidienne de r1 par r2 (la seconde équation de 4),
en soustrayant à la seconde équation q2 fois la troisième dans 5 on obtient

1× a + 0× b = r0
0× a + (−1)× b = r1
1× a + (−q1)× b = r2

(−q2)× a + (−1 + q1q2)× b = r3

(6)

En continuant étape par étape, en effectuant les divisions euclidiennes des restes successifs (les
membres de droite) on fait finalement apparaître une relation entre a, b, et a ∧ b qui s’écrit
donc comme une combinaison entière des deux. Si l’on désigne par (un) et (vn) les suites de
coefficients respectivement associés à a et b, on obtient des définitions récursives de ces deux
suites données par la relation : {

un+1 = un−1 − qnun
vn+1 = vn−1 − qnvn

(7)

Cette relation sera le point de départ d’une implémentation convenable 9 de l’algorithme de
Bézout que vous devrez essayer de réaliser.

Corollaire 3.7. Deux entiers naturels a et b sont premiers entre eux si et seulement s’il existe
un couple de relatifs (u, v) vérifiant

ua+ vb = 1. (8)

Démonstration. Si a et b sont premiers entre eux, alors a ∧ b = 1. D’après le théorème 3.6 il
existe un couple (u, v) vérifiant la relation attendue. Maintenant s’il existe une relation telle
que la relation 8, alors tout diviseur commun de a et b est aussi un diviseur de 1. Puisque a∧ b
est un diviseur positif de 1, il ne peut être que 1 ; ainsi a et b sont premiers entre eux.

Remarque 6. Nous avons déjà brièvement évoqué la complexité de l’algorithme d’Euclide. Celle
de l’algorithme étendu qui donne les coefficients de Bézout est similaire en temps 10. Ainsi, nous
avons bien un algorithme efficace pour déterminer si deux entiers naturels sont premiers entre
eux. Mais ce n’est qu’une des nombreuses applications de cet algorithme ; nous y reviendrons
plus tard.

4 Arithmétique modulaire

Les entiers ne sont pas les seuls objets mathématiques sur lesquels on peut utiliser les
résultats d’arithmétique ; bien qu’au départ prévue pour les nombres, cette théorie s’adapte

8. qui, de plus, permet de l’implémenter !
9. la méthode naïve qui consiste à faire toutes les divisions puis remonter serait une perte de temps, mais

surtout d’espace phénoménale !
10. regardez l’espace mémoire supplémentaire nécessaire en analysant votre implémentation
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à beaucoup d’autres objets partageant certaines propriétés structurelles avec les entiers. En
particulier, la structure principale dans laquelle on utilise l’arithmétique est celle que l’on
appelle un anneau. L’ensemble Z des entiers relatifs peut être muni d’une telle structure, mais
c’est le cas de nombreux autres ensembles. Nous allons en étudier quelques exemples simples
sur lesquels nous nous contenterons d’effectuer des calculs de base.

4.1 Jour de la semaine

Avant de nous plonger au cœur de l’arithmétique modulaire, prenons le temps d’examiner
un exemple basique d’application de cette théorie : le calcul du jour de la semaine selon la date.

Question 1. Supposons que nous soyons un lundi aujourd’hui ; comment calculer quel jour
de la semaine nous serons dans 37 jours ?

Une manière simple de répondre à cette question est de numéroter les jours de la semaine de 0
à 6 en commençant par le jour d’aujourd’hui : lundi. Tous les 7 jours on retombe sur un lundi
–certains d’entre vous le savent peut-être déjà :-p . La division euclidienne de 37 par 7 donne

37 = 5× 7 + 2.

On repasse donc 5 fois par lundi avant de continuer jusqu’à mercredi, qui est le jour portant
le numéro 2. Ainsi, le seul nombre pertinent dans cette question est 37 mod 7. Cela est vrai
dans le cas général : si l’on compte n jours à partir du lundi initial, on arrive au jour portant
le numéro n mod 7 (c’est un entier entre 0 et 6).

Essayons de formaliser tout ça pour expliquer de manière plus rigoureuse comment calculer
ainsi les jours de la semaine. On va partir du premier jour de notre ère d’après le calendrier
grégorien : le 1er janvier de l’an 0001 était un samedi 11. On note W l’ensemble des indices
représentant les jours de la semaine :

W = {0, 1, 2, 3, 4, 5, 6},

en initialisant en faisant correspondre le 0 au samedi. On va de plus supposer que le nombre
de jours avant et après le 1er janvier 0001 est infini 12.

Terminologie. On appellera date le nombre de jours avant ou après le « zéro », c’est-à-dire
l’origine fixée au 1er janvier 0001, afin d’éviter l’ambiguïté entre le jour de la semaine que l’on
cherche à calculer et la date.

Le problème principal peut alors être reformulé en :

Quel est le jour de la semaine correspondant à une date d ∈ Z donnée ?

Nous avons déjà donné la réponse à cete question plus haut : il suffit de trouver le reste
de la division euclidienne de d modulo 7.

Remarque 7. Attention : la primitive OCaml mod ne donne pas le résultat attendu si l’argument
préfixe (i.e. celui de gauche) est négatif. La fonction OCaml mod renvoie l’opposé du reste de
la division de la valeur absolue de l’argument préfixe si celui-ci est négatif, ce qui ne coïncide

11. well-known fact :-)
12. Ce qui, en ce qui concerne les jours avant, est difficile à concevoir, et en ce qui concerne les jours après,

est plutôt mal parti . . .
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pas avec la définition de la division standard (euclidienne) des entiers : en effet celle-ci garde
la même définition 13 pour les entiers relatifs que pour les naturels, le reste est donc toujours
un nombre positif.

Les calculs utilisés pour déterminer le jour de la semaine correspondant à une date im-
pliquent un certain nombre de compatibilités heureuses, en ce qui concerne l’addition et la
multiplication.

Par exemple, on pourrait se demander si le 37ème jour après un vendredi (6) est le même
que le (37 mod 7)ème jour après un vendredi. Le jour que nous recherchons est le 43ème jour
après samedi, on peut alors écrire

43 = 6× 7 + 1

ce qui nous dit que l’on cherche un dimanche. Nous avons fait l’opération suivante :

(37 + 6) mod 7.

Si l’on essaie le calcul (qui correspond à la suggestion précédente) :

((37 mod 7) + (6 mod 7)) mod 7

on retrouve le même résultat. C’est un fait général. Si l’on se donne deux dates d1 et d2, on
peut écrire ainsi leurs divisions euclidiennes par 7 :

d1 = 7× q1 + r1 (9)
d2 = 7× q2 + r2 (10)

En additionnant ces deux équations on obtient :

(d1 + d2) = 7× (q1 + q2) + (r1 + r2).

Mais ici, (r1 + r2) n’est pas forcément plus petit que 7. Si l’on refait la division

(r1 + r2) = 7× s+ t

on obtient
(d1 + d2) = 7× (q1 + q2 + s) + t

où t est positif et strictement inférieur à 7. D’après les deux dernières relations, on peut déduire
que

(r1 + r2) mod 7 = (d1 + d2) mod 7

ce qui est exactement ce que nous avons conclu dans notre exemple.
Il se passe la même chose si l’on utilise des multiplications. Supposons que l’on veuille

déterminer quel jour nous serons après 3 périodes de 32 jours. Cela fait 96 jours, le jour en
question est donc donné par 96 mod 7 = 5 : c’est un jeudi. On obtient exactement le même
résultat si l’on fait

((3 mod 7) * (32 mod 7)) mod 7

Cette propriété également est toujours vraie ; en réutilisant les équations 9 on peut écrire :

d1d2 = 7× (7q1q2 + q2r1 + q1r2) + r1r2

mais encore une fois r1r2 n’est pas forcément positif et strictement inférieur à 7. En utilisant
une division supplémentaire

r1r2 = 7× s+ t

13. le reste de la division de a par b est compris entre 0 et |b| − 1
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on parvient à la division euclidienne

d1d2 = 7× (7q1q2 + q2r1 + q1r2 + s) + t

dont on peut déduire que
d1d2 mod 7 = r1r2 mod 7.

En résumé :
— Le jour de la semaine associé à une date d est le reste dans la division euclidienne de d

par 7.
— Le jour de la semaine atteint après deux périodes d1 et d2 est le reste modulo 7 de la

somme d1 + d2, ou de manière équivalente la somme modulo 7 des restes de d1 et d2
modulo 7.

— Le point précédent est également vrai pour l’opération de multiplication. Le reste de la
multiplication de deux nombres d1 et d2 modulo 7 est le même nombre que celui obtenu
en multipliant les deux restes de d1 et d2 modulo 7, puis en prenant le reste modulo 7
du résultat.

Les opérations dont nous venons de parler sont une manifestation simple de propriétés plus
générales, et de constructions d’importance capitale en arithmétique. Elles jouent un rôle très
important en ce qui concerne la programmation entière.

4.2 L’anneau Z/nZ
Nous n’allons pas définir formellement ce qu’est un anneau. Il suffit ici de savoir que c’est

un ensemble muni de deux opérations binaires, l’addition et la multiplication qui ont les
mêmes propriétés 14 que l’addition et la multiplication d’entiers. L’anneau sur lequel nous allons
travailler est basé sur un ensemble fini. Ceci est d’une importance capitale du point de vue
machine : tout ce qui se passe dans un tel anneau devrait être implémentable en machine – si
ce n’est en ce qui concerne les problèmes de mémoire (dépassements par exemple).

Définition 4.1. Soit n > 1 un entier positif. L’anneau Z/nZ est l’ensemble

Z/nZ = {0, . . . , n− 1} = J0;n− 1K

muni des deux opérateurs binaires ⊕ et ⊗ définis comme suit : étant donnés deux éléments x
et y appartenant à Z/nZ :

x⊕ y = (x+ y) mod n (addition)

x⊗ y = (x× y) mod n. (multiplication)

Exemple 4.1. L’exemple le plus simple est n = 2. Dans ce cas Z/2Z = {0, 1}. L’addition et
la multiplication sont simplement données par les règles de calcul suivantes :

⊕ 0 1
0 0 1
1 1 0

⊗ 0 1
0 0 0
1 0 1

14. associativité de l’addition et de la multiplication, distributivité de la multiplication sur l’addition, com-
mutativité de l’addition. La multiplication n’est pas forcément commutative (dans le cas étudié elle le sera). De
plus, ces deux lois admettent un élément neutre (0 de l’addition et 1 de la multiplication) et chaque élément
admet un opposé par l’addition.
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Exemple 4.2. Le cas n = 3 représente l’ensemble {0, 1, 2} muni des lois d’addition et de
multiplication suivantes :

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

⊗ 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

En pratique, on est souvent intéressé par la projection d’un entier quelconque modulo un
entier positif donné. On peut représenter cette approche du problème par la fonction :

πn :

{
Z −→ Z/nZ
x 7−→ x mod n

Exemple 4.3. L’image d’un élément x ∈ Z par π2 nous dit si x est pair ou impair. Si π2(x) = 0
alors x est pair, il est impair sinon. Si l’image de x par π3 est 0, alors x est divisible par 3. Si
π3(x) = 1 alors x est de la forme 3k + 1 pour un certain k ∈ Z.

Notation. Il est fréquent de noter x̄n la quantité πn(x) ou x mod n. Selon le contexte (s’il n’y
a pas d’ambiguïté), on peut même se passer de l’indice.

De nombreuses questions en arithmétique moderne se résument à :

Soit x un entier dont les restes x̄n modulo un grand nombre d’entiers positifs n vérifient
une propriété P . Est-ce que x satisfait aussi P ?

Exemple 4.4. Soit P la propriété «être plus petit que 100». Prenons un entier x, si l’on regarde
les quantités x̄n pour n ≤ 100 on ne peut absolument rien en déduire quant à la question de
savoir si x ≤ 100. En effet, n’importe quel nombre aura un reste inférieur à 100 si l’on fait la
division modulo un nombre inférieur à 100. De même, le fait que x̄101 soit plus petit que 100 ne
signifie pas que x l’est aussi. Par exemple 102101 = 1. En réfléchissant à la question, on se rend
compte que si x ≤ 100 alors tous les restes modulo n ≥ 101 seront égaux à x. La réciproque 15

est également vraie : si tous les restes x̄n pour n ≥ 101 sont égaux à x alors x ≤ 100.

Remarque 8. L’exemple précédent est un exemple un peu stupide, pour des questions de re-
cherche plus précises, n’hésitez pas à demander !

Les compatibilités mises en lumière dans la section 4.1, à propos du comportement de
l’addition et de la multiplication par rapport aux opérations de modulo, sont des propriétés
générales que l’on exprime par : soient deux entiers x et y dans Z alors

(x+ y)n = x̄n ⊕ ȳn (addition)

(xy)n = x̄n ⊗ ȳn. (multiplication)

Notation. Dans ce domaine, les abus de notation sont fréquents. La plupart du temps, la barre
·̄ et l’indice sont sous-entendus. C’est également les cas des notations ⊕ et ⊗ qui ne sont pas
standard ; on les remplace simplement par + and −. Dans la suite, nous ne les utiliserons plus.
Cela mis à part, soit on gardera à la fois le ·̄ et l’indice ou on laissera tomber les deux, on
utilisera aussi la notation suivante : pour x et y dans Z alors l’égalité

x̄n = ȳn

15. intéressante pour sa contraposée : s’il existe un nombre n ≥ 101 tel que x̄n 6= x alors x > 100.
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s’écrit aussi
x ≡ y [n]

ou encore
x ≡n y.

L’égalité est remplacée par le symbole ≡ et [n] indique que nous regardons les restes de x et
y modulo n, ce qui correspond à x̄n et ȳn dans Z/nZ. Ainsi, les compatibilités précédentes
peuvent être réécrites de la manière suivante :

x+ y ≡ x̄n + ȳn [n] (addition)

xy ≡ x̄nȳn [n] (multiplication)

4.3 Éléments inversibles de Z/nZ
Si l’on se penche sur la multiplication des nombres rationnels ou réels, on sait que pour

tout nombre non nul x ∈ R∗ il existe un nombre y tel que xy = 1. Par exemple, si x = 2 alors
y = 0.5. En général, ce n’est pas le cas dans Z/nZ. Voici par exemple la table de multiplication
de Z/4Z :

⊗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

.

On peut voir que tout élément x différent de 0 et 2 admet un homologue y tel que xy ≡ 1 [n].
Le fait est que 2 n’est pas nul mais n’admet pas de tel homologue, un comportement différent
de ce à quoi vous êtes habitués.

Définition 4.2. Un élément x ∈ Z/nZ est dit inversible s’il existe y ∈ Z/nZ tel que xy ≡ 1 [n].

L’élément y est alors unique et appelé inverse de x dans Z/nZ.
Notation. L’inverse d’un élément inversible x ∈ Z/nZ est notée x−1. L’ensemble des éléments
inversibles de Z/nZ est noté (Z/nZ)×. On note aussi ϕ(n) le nombre d’éléments inversibles de
Z/nZ ; cela correspond au cardinal de (Z/nZ)×. Dans la littérature, ϕ(n) est appelé indicatrice
d’Euler de n.

Soit x un élément inversible de Z/nZ dont l’inverse est y. Par définition cela signifie xy ≡
1 [n] ; de manière plus explicite, il existe k ∈ Z tel que

xy + kn = 1. (11)

Si l’on se reporte au théorème de Bézout, cela implique que n et x sont premiers entre eux.
Réciproquement, si x et n sont premiers entre eux, il existe une relation du type 11, modulo n
cela montre que x admet en y une inverse.

Proposition 4.1. L’ensemble des éléments inversibles de Z/nZ est l’ensemble des éléments de
{0, . . . , n− 1} qui sont premiers avec n. Cet ensemble est appelé groupe multiplicatif de Z/nZ.

Corollaire 4.2. Si p est un nmobre premier, tous els éléments de {1, . . . , p−1} sont inversibles,
i.e.

(Z/pZ)× = {1, . . . , p− 1}.
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Démonstration. Tout entier qui n’est pas un multiple de p est premier avec p. C’est en parti-
culier le cas de tout élément non nul de Z/pZ.

Écrire une fonction qui teste si un entier est inversible modulo n consiste à utiliser pro-
prement l’algorithme d’Euclide ; nous sommes déjà capables de faire ceci. La recherche peut
être facilitée drastiquement dans un certain cas, si l’on connaît un peu mieux les propriétés
intrinsèques des éléments de (Z/nZ)×.

Proposition 4.3. Si x et y sont deux éléments inversibles modulo n alors xy est aussi inversible
modulo n.

Démonstration. Notons x−1 et y−1 les inverses respectives de x et y. Le produit y−1x−1 est
alors l’inverse de xy.

Ainsi, si l’on a trouvé un élément inversible, toutes les puissances de cet élément sont encore
des éléments inversibles.

Exemple 4.5. Par exemple, dans le cas de Z/5Z le groupe multiplicatif est {1, 2, 3, 4}. Les
puissances de 1 ne permettent de trouver que 1. Mais les puissances de 2 modulo 5 engendrent
l’ensemble {1, 2, 3, 4}.

On n’aura pas toujours la chance de pouvoir trouver un entier dont les puissances engendrent
le groupe multiplicatif, i.e. qui permet de trouver tous les éléments dudit groupe.

Exemple 4.6. Dans le cas de Z/8Z, le groupe multiplicatif est {1, 3, 5, 7}. On peut vérifier que
le carré de chacun des éléments de (Z/8Z)× vaut 1. Si l’on cherche donc parmi les puissances
d’un élément inversible x, ici on ne trouve aucun autre élément inversible, mis à part 1 dans le
cas où x 6= 1.

Le sous-ensemble du groupe multiplicatif composé des différents éléments que l’on peut
engendrer en cherchant parmi les puissances d’un élément inversible donné a un grand intérêt
en arithmétique modulaire (modulo n). De tels sous-ensembles peuvent par exemple être une
bonne mesure de la solidité d’une clé privée RSA. Pour le cryptosystème ElGamal, des données
publiques valides consistent partiellement en un élément qui engendre le groupe multiplicatif
d’un anneau Z/nZ spécifique. La section qui suit se consacre à regarder plus en détail les
puissances d’éléments inversibles dans Z/nZ.

4.4 Petit théorème de Fermat

Définition 4.3. Soit x un élément inversible de Z/nZ (i.e. un élément de (Z/nZ)×). On appelle
ordre de x le plus petit k ∈ N∗ tel que xk ≡ 1 [n]. L’ordre de x modulo n est noté ordn(x).

Exemple 4.7. Dans le cas n = 8, les éléments inversibles de Z/8Z sont 1, 3, 5, 7. Le premier
est d’ordre 1, les autres d’ordre 2.

Exemple 4.8. Le groupe multiplicatif de Z/9Z est composé des éléments 1, 2, 4, 5, 7 et 8,
d’ordres respectifs 1, 6, 3, 6, 3 et 2.

L’article défini mis en valeur dans la définition 4.3 suggère qu’il existe toujours un tel plus
petit entier strictement positif et donc que l’ordre de x est bien défini. Cela exprime de manière
implicite le fait que l’ensemble {k ∈ N∗ | xk ≡ 1 [n]} n’est pas vide. Bien que nous ayons vérifié
ce fait sur deux exemples, nous n’avons pas jusqu’à présent démontré que cela était forcément
le cas.

Théorème 4.4. Soit x un élément inversible de Z/nZ. Alors xϕ(n) ≡ 1 [n].
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Démonstration. Afin de simplifier les notations, notons Gn le groupe multiplicatif (Z/nZ)×.
La preuve que nous donnons ici se base sur une compréhension structurelle de l’action des
éléments de Gn sur leur environnement. Soit mx la fonction de Gn vers Gn qui à y associe
xy. Par exemple, avec n = 9 et x = 2 la fonction m2 a pour domaine (et ensemble d’arrivée)
G9 = {1, 2, 4, 5, 7, 8}. Elle envoie la liste d’éléments [1; 2; 4; 5; 7; 8] vers la liste [2; 4; 8; 1; 5; 7],
c’est-à-dire :

1 → 2
2 → 4
4 → 8
5 → 1
7 → 5
8 → 7

.

On peut vérifier que m2 définit ainsi une bijection de G9 vers lui-même ; c’est ce que nous
appellons une permutation. L’ensemble image de m2 est ici égal à G9. Cette observation se
généralise : mx est toujours une permutation de Gn.

Pour montrer que mx est injective, supposons qu’il existe deux éléments y1 et y2 de Gn tels
que mx(y1) = mx(y2). Cela signifie :

xy1 ≡ xy2 [n].

Par définition x est inversible,en multipliant la relation précédente par x−1 on obtient alors
y1 ≡ y2 [n].

Pour constater que mx est surjective, on peut voir que pour tout élément y de Gn, l’élément
t = x−1y de Gn vérifie mx(t) = y.

Le fait que mx soit bijective implique l’égalité des ensembles

{xy | y ∈ Gn} = {y | y ∈ Gn}

en conséquence, le produit de tous les éléments de l’ensemble de gauche et celui de tous les
éléments de l’ensemble de droite sont égaux (logique vu que les ensembles contiennent les
mêmes éléments). Ainsi 16

xϕ(n)
( ∏

y∈Gn

y
)
≡
( ∏

y∈Gn

y
)

[n].

Comme le produit d’éléments inversibles est encore inversible, en multipliant la relation précé-
dente par l’inverse du terme de droite on obtient

xϕ(n) ≡ 1 [n],

ce qui est le résultat attendu.

Corollaire 4.5 (Petit théorème de Fermat). Soit p un nombre premier, et soit x un élément
non nul de Z/pZ ; alors

xp−1 ≡ 1 [p].

Démonstration. L’ensemble des éléments inversibles de Z/pZ est encore l’ensemble de ses élé-
ments non nuls, dans ce cas-là ϕ(p) = p− 1.

Remarque 9. Le petit théorème de Fermat s’énonce également ainsi : pour tout x de Z/pZ,
xp ≡ x [p]. Cet énoncé est équivalent au précédent si x est inversible : en multipliant cette
équation par x−1 on retrouve 4.5. Si x n’est pas inversible, il est nul, et la relation donne alors
0 ≡ 0 [p] ce qui est encore vrai.

16. Cette preuve, simple, utilise la commutativité de la multiplication. Le résultat reste vrai même si l’on
enlève cette hypothèse.
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Dans les deux exemples 4.7 et 4.8, on a ϕ(8) = 4 et ϕ(9) = 6. Les ordres des éléments
inversibles de Z/8Z sont tous des diviseurs de ϕ(8). C’est également le cas pour les inversibles
de Z/9Z ; en fait c’est un résultat général.

Proposition 4.6. Soit x un élément inversible de Z/nZ. Un élément m ∈ N∗ vérifie xm ≡ 1 [n]
si et seulement si c’est un multiple de ordn(x).

Démonstration. Notons k l’ordre de x modulo n. La division euclidienne de m par k donne la
relation m = kq + r où 0 ≤ r < k. Ainsi, on obtient

xm ≡ xkqxr [n] (12)
1 ≡ xr [n]. (13)

Si r était strictement positif, alors r vérifierait xr ≡ 1 [n] tout en étant strictement plus petit
que k, ce qui contredirait la définition de k (qui est le plus petit entier strictement positif tel
que xk ≡ 1 [n]). Nécessairement r = 0, et m est donc un multiple de l’ordre de x.

Corollaire 4.7. L’ordre d’un élément inversible de Z/nZ divise ϕ(n).

Démonstration. Cela découle du fait que xϕ(n) ≡ 1 [n], d’après 4.4.

4.5 Théorème des restes chinois

Il est fréquent en mathématiquesd’essayer de comprendre un objet en le décrivant comme
étant composé de plusieurs sous-objets plus faciles à comprendre. C’est également une philo-
sophie très répandue en informatique : c’est plus ou moins le principe des stratégies de “diviser
pour régner” ; sans parler du fait qu’un logiciel est principalement pensé comme une série de
composants reliés, chacun voué à une tâche particulière. Dans le cas de l’arithmétique mo-
dulaire, il est possible de décomposer de nombreux ensembles Z/nZ en produits cartésiens
d’ensembles Z/mZ plus petits : c’est ce que nous allons évoquer dans cette section.

Soient m et n deux entiers premiers entre eux, plus grands que 1. ON considère la fonction
ψ

ψ :

{
Z/nmZ −→ Z/nZ× Z/mZ

x 7−→ (x̄n, x̄m)

qui à x ∈ {0, . . . , nm− 1} associe le couple formé de ses restes modulo n et modulo m respec-
tivement, ce qui donne un couple de Z/nZ× Z/mZ.

Exemple 4.9. Considérons par exemple le cas (n,m) = (2, 3). La fonction ψ a pour domaine
de départ Z/6Z et d’arrivée Z/2Z × Z/3Z. Voici la liste des images des 6 éléments de Z/6Z
par ψ :

0 → (0, 0)
1 → (1, 1)
2 → (0, 2)
3 → (1, 0)
4 → (0, 1)
5 → (1, 2)

On remarque tout de suite que cette fonction est bijective ; ainsi Z/6Z contient autant d’infor-
mation que Z/2Z×Z/3Z. Le résultat est encore plus puissant : les opérations arithmétiques sur
Z/6Z se reflètent sur Z/2Z × Z/3Z via la fonction ψ. Définissons les opérations d’addition et
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de multiplication sur Z/2Z×Z/3Z comme suit : pour tout (x1, x2) et (y1, y2)dansZ/2Z×Z/3Z
on a

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) (addition)
(x1, x2)× (y1, y2) = (x1y1, x2y2). (multiplication)

Ce sont en fait les addition et multiplication coordonnée par coordonnée. Voici les tables d’ad-
dition et de multiplication pour Z/6Z muni des opérations usuellles, et pour Z/2Z×Z/3Z avec
les opérations que l’on vient de définir.

Z/6Z Z/2Z× Z/3Z

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

+ (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 0) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(1, 1) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2) (0, 0)
(0, 2) (0, 2) (1, 0) (0, 1) (1, 2) (0, 0) (1, 1)
(1, 0) (1, 0) (0, 1) (1, 2) (0, 0) (1, 1) (0, 2)
(0, 1) (0, 1) (1, 2) (0, 0) (1, 1) (0, 2) (1, 0)
(1, 2) (1, 2) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1)

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

× (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 1) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 2) (0, 0) (0, 2) (0, 1) (0, 0) (0, 2) (0, 1)
(1, 0) (0, 0) (1, 0) (0, 0) (1, 0) (0, 0) (1, 0)
(0, 1) (0, 0) (0, 1) (0, 2) (0, 0) (0, 1) (0, 2)
(1, 2) (0, 0) (1, 2) (0, 1) (1, 0) (0, 2) (1, 1)

Les éléments x ∈ Z/6Z et leurs images ψ(x) ∈ Z/2Z× Z/3Z occupent la même position dans
leurs tableaux respectifs. En examinant ceux-ci de plus près, on peut vérifier les deux faits
suivants : pour tout x, y ∈ Z/6Z on a

ψ(x+ y) = ψ(x) + ψ(y) ψ(x× y) = ψ(x)× ψ(y).

Pour résumer, ψ est une bijection qui transforme les opérations arithmétiques de son domaine
de définition en les opérations analogues de son ensemble d’arrivée. On peut donc faire au choix
les opérations voulues sur le tableau de droite, puis les utiliser pour obtenir des résultats sur
celui de gauche, ou bien l’inverse.

L’exemple précédent n’est qu’un cas particulier d’un résultat général. Ce résultat est expli-
cité par le théorème des restes chinois, dont voici l’énoncé.

Théorème 4.8. Soient n et m deux entiers strictement supérieurs à 1 et premiers entre eux.
La fonction

ψ :

{
Z/nmZ −→ Z/nZ× Z/mZ

x 7−→ (x̄n, x̄m)

est bijective ; de plus pour tout (x, y) ∈ (Z/nmZ)2 on a les compatibilités

ψ(x+ y) = ψ(x) + ψ(y) (addition)
ψ(x× y) = ψ(x)× ψ(y). (multiplication)
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Remarque 10. Il faut prendre garde au fait que les opérations arithmétiques dans les compati-
bilités ci-dessus ne sont pas définies de la même façon des deux côtés de l’égalité. À gauche on
a l’opération telle qu’on l’entend dans Z/nmZ, à droite l’opération coordonnée par coordonnée
dans Z/nZ× Z/mZ.

Démonstration. Les compatibilités de l’addition et de la multiplication sont indépendantes du
caractère bijectif de ψ. Si l’on prend deux éléments x et y de Z/nmZ, alors par définition

ψ(x+ y) =
(
(x+ y)n, (x+ y)m

)
(14)

en utilisant la compatibilité du modulo avec l’addition

ψ(x+ y) = (x̄n + ȳn, x̄m + ȳm) (15)

par définition de l’addition dans Z/nZ× Z/mZ

ψ(x+ y) = (x̄n, ȳm) + (x̄n, ȳm) (16)

enfin, par définition de ψ

ψ(x+ y) = ψ(x) + ψ(y) (17)

En appliquant le même raisonnement à la multiplication, on arrive à

ψ(x× y) = ψ(x)× ψ(y).

Regardons maintenant les aspects injectif et surjectif. La raison principale pour laquelle ψ
est à la fois surjective et injective vient du fait que n et m sont premiers entre eux. Ce résultat
peut en fait être étendu à des contextes beaucoup plus larges.

Injectivité de ψ Supposons qu’il existe deux éléments x et y de Z/nmZ ayant la même
image par ψ, i.e. ψ(x) = ψ(y). Ceci équivaut à

x̄n ≡ ȳn [n]
x̄m ≡ ȳm [m]

Ainsi
(x− y)n ≡ 0 [n]

(x− y)m ≡ 0 [m]

donc n et m divisent tous les deux x − y. LE PPCM de n et m divise alors x − y. Puisque
n ∧m = 1, ce PPCM est nm 17. On obtient ainsi x ≡ y [nm] qui est le résultat attendu.

Surjectivité de ψ Le côté surjectif de ψ peut être déduit d’un argument de cardinal : la
fonction ψ est injective et les ensembles de départ et d’arrivée ont le même cardinal fini, elle
est donc bijective. Mais comme toujours en informatique, il est plus intéressant d’exhiber une
preuve constructive qui donne un moyen d’écrire la fonction réciproque de ψ : c’est la fonction
φ qui à y = (y1, y2) ∈ Z/nZ × Z/mZ associe l’élément x ∈ Z/nmZ tel que ψ(x) = y. Par
hypothèse, on peut trouver des entiers u et v tels que

un+ vm = 1.

17. On le déduit du lemme de Gauss. La décomposition en facteurs premiers des PGCD et PPCM établit
aussi ce résultat.
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En examinant cette relation modulo n puis modulo m, on obtient

vm ≡ 1 [n]
un ≡ 1 [m]

L’entier x = y1vm+ y2un vérifie alors

y1vm+ y2un ≡ y1vm ≡ y1 [n]
y1vm+ y2un ≡ y2un ≡ y2 [m]

ce qui signifie exactement ψ(x) = y. Ainsi, φ est définie par

φ(y1, y2) = y1vm+ y2un [nm]

où v et u sont les entiers, définis auparavant, qui viennent de la relation de Bézout, y1 ∈
{0, . . . , n − 1} et y2 ∈ {0, . . . ,m − 1}. Pour être plus précis, il faudrait vérifier qu’un choix
différent de coefficients de Bézout (u′, v′) donnerait toujours la même fonction φ. Mais tout
autre couple de coefficients de Bézout est de la forme (u′, v′) = (u + km, v − kn) avec k ∈ Z ;
l’expression devient alors

y1v
′m+ y2u

′n = y1(v − kn)m+ y2(u+ km)n (18)
= y1v + y2m+ (−y1k + y2k)mn (19)
≡ y1v + y2m [nm]. (20)

Un choix différent de coefficients de Bézout définit donc bien la même fonction réciproque
φ.

Exemple 4.10. Regardons un exemple simple pour établir une stratégie de calcul de l’antécé-
dent d’un élément par ψ. Prenons (n,m) = (4, 7) et considérons le couple (2, 5) ∈ Z/4Z×Z/5Z.
Si l’on suit les étapes du raisonnement précédent, il nous faut d’abord trouver un couple de
coefficients de Bézout associés aux nombres 4 et 7 premiers entre eux. Un calcul rapide permet
d’obtenir

(−5)× 4 + 3× 7 = 1. 18

L’élément
5× (−5)× 4 + 2× 3× 7 ≡ 26 [28]

a un reste modulo 4 égal à 2 et un reste modulo 7 égal à 5, i.e. ψ(26) = (2, 5).

Corollaire 4.9. Étant donné un entier k > 1, soit m1, . . . ,mk une liste d’entiers strictement
supérieurs à 1 qui sont deux à deux premiers entre eux. On note m le produit de tous les mi.
Alors la fonction

ψ :

{
Z/mZ −→ Z/m1Z× · · · × Z/mkZ
x 7−→ (x̄m1 , . . . , x̄mk

)

est une bijection compatible avec l’addition et la multiplication coordonnée par coordonnée dans
l’ensemble d’arrivée.

Démonstration. Nous n’allons qu’indiquer les étapes principales de la démonstration dans ce
qui suit, formaliser le tout serait une perte de temps.

La compatibilité avec l’addition et la multiplication deux à deux est tautologique, issue du
fait que l’opération modulo est elle-même compatible avec les deux. La preuve de la bijectivité

18. Ce sont les coefficients donnés par l’algorithme d’Euclide, qui ne sont pas forcément les plus «simples»
(ici 2 et −1 marchaient aussi).
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est algorithmique ; elle se base sur une utilisation du théorème des restes chinois par récurrence
pour construire une fonction réciproque.

Si l’on voulait vérifier l’injectivité de la fonction, on se trouverait exactement dans la même
situation que lors de la preuve de 4.8. Deux éléments ayant la même image ont une différence
divisible par m1, . . ., mk. Puisque ces entiers sont deux à deux premiers entre eux, ladite
différence divise leur produit m. Ainsi les deux nombres sont égaux modulo m. Cela suffit
même à montrer la bijectivité, encore une fois car les ensembles de départ et d’arrivée ont le
même cardinal.

Voici comment construire l’image réciproque d’un élément (y1, . . . , yk) : supposons qu’on a
déjà l’antécédent y1···j de (y1, . . . , yj) pour 1 ≤ j ≤ k in Z/(m1 · · ·mj)Z. Alors, l’antécédent de
(y1, . . . , yj, yj+1) dans Z/(m1 · · ·mj+1)Z est

y1···jumj+1 + yj+1v(m1 · · ·mj)

où u et v sont des coefficients de Bézout associés au couple (mj+1,m1 · · ·mj).

5 Intérêt du théorème des restes chinois

Un bon nombre de questions centrales en arithmétique reviennent à identifier des nombres
premiers et des nombres inversibles. Le but est d’être capable de factoriser un élément non
inversible donné selon ses comosantes premières. La factorisation est un processus coûteux ;
c’est la raison pour laquelle la méthode de chiffrement RSA est relativement sûre quand elle
fait intervenir des nombres premiers assez grands. Une autre difficulté est liée au fait que
calculer des puissances d’entiers suffisamment grands a un impact extrêmement coûteux sur
les calculs. De nombreuses méthodes de cryptage standard se basent justement sur l’utilisation
de puissances de grands nombres.

Le théorème des restes chinois peut aider à séparer en plusieurs sous-problèmes plus petits
chacune des difficultés précédentes. C’est quelque chose que l’on peut déjà réaliser en ce qui
concerne les puissances d’un entier :
Supposons que l’on travaille avec des entiers plus petits qu’un entier M fixé. Soit la décompo-
sition

M = M1M2 · · ·Mh

où les Mj sont deux à deux premiers entre eux. D’après le théorème des restes chinois, on a
alors

Z/MZ ' Z/M1Z× · · · × Z/MhZ

où la notation ' signifie qu’il existe entre les deux ensembles une bijection compatible avec
les opératoins arithmétiques ; c’est ce que l’on appelle un isomorphisme. Si l’on prend des
entiers positifs x et k tels que xk est inférieur à M , alors on peut calculer xk en regardant la
kème puissance de chaque composante de

(x̄M1 , x̄M2 , . . . , x̄Mh
)

puis en reconstruisant son image réciproque à l’aide du théorème chinois. Chaque calcul est plus
rapide en utilisant le terme de droite, puisque les facteurs impliqués sont plus petits en premier
lieu, mais aussi puisque, comme ce sont des constantes du système, on peut calculer en amont
leurs indicatrices d’Euler et ainsi utiliser des simplifications (à base de divisions euclidiennes)
pour pouvoir calculer les puissances.

Remarque 11. Remarquez que si M est un nombre premier, ou une puissance d’un nombre
premier, il n’est pas possible d’appliquer une telle stratégie ; dans ce cas-là le théorème des
restes chinois ne donne aucune décomposition et n’est donc d’aucune aide.
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L’approche précédent est l’approche canonique en ce qui concerne l’utilisation du théorème
des restes chinois : si l’on veut faire une vérification, un test ou un calcul spécifique dans Z/MZ,
on regarde l’image de notre donnée dans Z/M1Z × · · ·Z/MhZ, on fait dans cet ensemble les
calculs composante par composante, équivalents mais plus rapides, puis on retransforme les
résultats pour les écrire dans Z/MZ.

5.1 Calculs d’inversibles

Revenons à l’exemple précédent : Z/6Z. Selon le théorème des restes chinois, nous avons
un isomorphisme entre Z/6Z et Z/2Z×Z/3Z donné par la fonction dont l’image est composée
des réductions modulo 2 et 3 du nombre de départ.

Z/6Z Z/2Z× Z/3Z
0
1
2
3
4
5

0 1
0 (0, 0) (0, 1)
1 (1, 0) (1, 1)
2 (2, 0) (2, 1)

Les éléments inversibles dans Z/6Z sont les éléments grisés. Leurs images dans Z/2Z × Z/3Z
sont les cellules grisées correspondant à (1, 1) et (2, 1). Dans Z/6Z, 1 est sa propre inverse,
ce qui est également le cas pour 5. Si l’on multiplie (1, 1) et (2, 1) par eux-mêmes, on obtient
(1, 1) pour le premier et (4, 1) = (1, 1) pour le second. Ainsi, pour tout élément x parmi les
deux précédents, il existe un élément y tel que xy = (1, 1). En un sens, on affirme que les deux
éléments (1, 1) et (2, 1) sont inversibles dans Z/2Z × Z/3Z. Dans ce contexte, l’élément (1, 1)
remplace l’élément 1 de Z/6Z. On l’appelle élément neutre de Z/2Z×Z/3Z car la multiplication
de tout élément de z ∈ Z/2Z × Z/6Z par (1, 1) donne encore z. Une manière de reformuler
cette remarque serait de dire que les éléments inversibles de Z/6Z correspondent (via notre
bijection) aux éléments inversibles de Z/2Z× Z/3Z.

L’élément du produit Z/M1Z×· · ·×Z/MhZ dont toutes les coordonnées sont égales à 1 est
appelé élément neutre de cet ensemble produit. Le résultat de la multiplication de n’importe
quel élément z par (1, . . . , 1) vaut encore z. Un élément x ∈ Z/M1Z × · · · × Z/MhZ est dit
inversible s’il existe un élément y tel que xy = (1, . . . , 1). Ces définitions généralisent celles que
nous avons vues précédemment dans Z/nZ.

Proposition 5.1. Un élément x ∈ Z/MZ est inversible si et seulement si son image ψ(x) –
par l’isomorphisme donné par le théorème des restes chinois – est inversible.

Démonstration. Soit x un élément inversible de Z/MZ. Par définition, il existe y ∈ Z/MZ
tel que xy ≡ 1 [M ]. En prenant l’image par ψ des deux membres de l’équation, on obtient

ψ(xy) = ψ(x)ψ(y) = (1, . . . , 1)

ce qui signifie exactement que tout élément inversible x de Z/MZ est envoyé sur un élément
inversible de Z/M1Z× · · · × Z/MhZ.
Réciproquement, soit x un élément de Z/MZ dont l’image ψ(x) est inversible dans Z/M1Z×
· · · × Z/MhZ. Par définition, on peut trouver un élément ȳ ∈ Z/M1 × · · · × Z/MhZ tel que
ψ(x)ȳ = (1, . . . , 1). Puisque ψ est un isomorphisme, il existe y ∈ Z/MZ tel que ψ(y) = ȳ.
Ainsi, on peut écrire

ψ(1) = (1, . . . , 1) = ψ(x)ψ(y) = ψ(xy).

En appliquant ψ−1 aux deux extrémités de l’égalité précédente, on obtient xy ≡ 1 [M ].

22 mai 2019 20 B. DUDIN & G. GORON



Epita AFIT

Corollaire 5.2. La fonction induite par ψ sur (Z/MZ)× définit une bijection

ψ× : (Z/MZ)× −→ (Z/M1 × · · · × Z/MhZ)×

compatible avec la multiplication. L’image par cette fonction est le h-uplet composé des réduc-
tions modulo Mi de l’argument, comme c’est le cas pour ψ.

Afin de calculer l’inverse d’un élément x in Z/MZ, on peut :
— calculer l’image (x̄1, . . . , x̄h) de x par la fonction ψ dans Z/M1 × · · · × Z/MhZ ;
— Trouver l’inverse ȳi de chaque élément xi dans Z/MiZ s’il y en a une ;
— si l’on ne peut pas réaliser l’étape précédente, x n’est pas inversible, sinon on calcule

l’image réciproque y par ψ de (ȳ1, . . . , ȳh) ;
— Le y obtenu est l’inverse de x.

5.2 Factorisation d’entiers

Avec un peu de travail, on peut adapter la stratégie “diviser pour régner” précédente à la
résolution d’un autre problème épineux : la factorisation d’entiers inférieurs à M . Commen-
çons par examiner le cas M = 15. Le théorème des restes chinois établit un isomorphisme ψ
traduisant le résultat

Z/15Z ' Z/3Z× Z/5Z.

Si l’on se place dans le membre de gauche, on obtient la décomposition 14 = 2× 7. En prenant
l’image par ψ des deux membres de cette égalité, on obtient l’équation (2, 4) = (2, 2)× (1, 2),
que l’on peut encore écrire

ψ(14) = (2, 4) = (2× 1, 2× 2) = (2, 2)× (1, 2) = ψ(2)× ψ(7).

Cela suggère que factoriser 14 revient à factoriser chaque composante de son image par ψ, puis
reconstruire l’image réciproque de chaque facteur par la fonction ψ. Pour que ceci ait du sens,
il faudrait en premier lieu que chaque facteur ait un antécédent par ψ qui soit plus petit que
l’entier que l’on essaie de factoriser : par exemple, si on prend 12, son image dans Z/3Z×Z/5Z
est (0, 2), qui peut se décomposer comme étant le produit de (0, 4) et (0, 3). L’image réciproque
de (0, 4) est 9 et celle de (0, 3) est 3. Le produit 9× 3 ne donne 12 que modulo 15, et n’est pas
une factorisation de 12. Remarquez que la décomposition en produit de (0, 2) n’est pas unique
et qu’un autre choix aurait pu amener à un résultat différent. Un exemple encore plus fragrant
est celui de l’entier 5. Son image par ψ est (2, 0) que l’on peut écrire comme le produit de
(2, 0) et (1, 0). Leurs imagess réciproques respectives étant 5 et 10, le produit obtenu vaut bien
encore 5 modulo 15, mais n’est bien évidemment pas une factorisation non triviale de l’entier
5 qui est premier dans Z.

Plutôt que de donner une compréhension exhaustive du phénomène, examinons-le à travers
la recherche de facteurs par force brute. Considérons que l’on cherche un facteur d’un entier
m inférieur à M . Une méthode naïve mais valide consiste à parcourir tous les entiers de 2 à√
m en testant la divisibilité de m. Une manière de le faire est de parcourir les entiers k en

partant de 2, en incrémentant jusqu’à ce qu’on trouve un diviseur de m ou que k2 > m. Dans
l’ensemble d’arrivée de l’isomorphisme ψ, c’est-à-dire Z/M1Z×· · ·Z/MhZ, cela est donné par :

1. Soit k = 2 et κ = (k̄M1 , . . . , k̄Mh
).

2. Si κ a une coordonnée dont le carré est plus grand que la coordonnée correspondante
dans ψ(m), on incrémente k de 1.

3. On teste si κ divise ψ(m) composante par composante ;
— si ce n’est pas le cas, on incrémente k de 1 et on recommence ;
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— si cela fonctionne, l’image réciproque k de κ est un facteur de m.

Remarque 12. Au cas où m est inversible et peut être factorisé par k, alors le quotient de m
par k est mk−1. Si ce n’est pas le cas, le quotient n’est pas unique ; c’est par exemple le cas
pour l’exemple précédent 12 ≡ 3× 9 ≡ 3× 4 [15].

6 Cryptage : un ersatz

Le cryptage est l’action de transformer un message en une suite de caractères inintelligible
excepté pour le récipiendaire. Cela implique une procédure de chiffrement et une procédure
de déchiffrement. D’une perspective abstraite, si l’on note M l’ensemble de messages et C
l’ensemble des messages cryptés, une méthode de cryptage nécessite deux fonctions c :M→ C
et d : C → M telles que d ◦ c = idM. L’expéditeur doit connaître c et le récipiendaire d. On
attend d’un bon cryptage qu’il vérifie un certain nombre de propriétés :

— Les calculs d’images par c et d doivent être faciles et rapides ;
— Les méthodes c et d doivent être difficiles à déterminer si l’on ne possède qu’un sous-

ensemble (ou mieux, tous) des messages cryptés C.
Remarque 13. Comme tout dans un ordinateur n’est que suites de nombres, les ensembles de
messages M et de messages cryptés C seront principalement considérés comme ayant le type
entier. Transformer un message lisible pour un humain en un entier consiste principalement à
encoder les caractères.

6.1 Chiffrements symétriques

Le chiffrement symétrique les plus simple est celui connu sous le nom de «code 19 de César».
Il consiste à prendre l’alphabet et décaler toutes les lettres d’une constante donnée, comme sur
la figure 1.

a b c d e f g h i j k l m n o p q r s t u v w x y z
f g h i j k l m n o p q r s t u v w x y z a b c d e

Figure 1 – Décalage alphabétique de 6 lettres pour le code de César

La fonction de chiffrement c dans ce cas est lue de haut en bas : elle envoie a sur f , bsur g
etc. Pour chiffrer hello on procède alors ainsi :

c(hello) = mjqqt

en appliquant la fonction caractère après caractère. Pour déchiffrer un message et retrouver le
message original, il suffit de lire le tableau de bas en haut. La fonction d renvoie f sur a, g sur
b etc. La connaissance de d ou c dépend donc de deux manières de lire le même tableau. Ainsi,
l’expéditeur et le récipiendaire ont une connaissance équivalente du cryptosystème utilisé :
il suffit d’avoir d pour deviner c et vice versa. C’est pourquoi un tel cryptosystème est dit
symétrique.

Si l’on excepte ce qui concerne l’encodage des caractères, le principe du code de César peut
être résumé de la manière suivante : en se donnant un entier n > 1 modulo lequel nous allons
travailler, déterminer un code de César revient à choisir un entier k ∈ Z correspondant au
décalage. La fonction c : Z/nZ→ Z/nZ est la translation c(x) = x+ k. Sa réciproque est donc
la translation réciproque d(x) = x− k.

19. ou chiffre de César
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Terminologie. Le système de chiffrement précédent est entièrement déterminé par la donnée
de k. Quand un système de cryptage dépend ainsi d’une donnée numérique, cette donné est
appelée clé.

Question 2. Comment peut-on généraliser le système précédent ?

Question 3. Pouvez-vous imaginer un moyen de déchiffrer (on dit casser) un code de
César, pourvu que vous disposiez d’assez de données codées ?

6.2 Chiffrements asymétriques

Un système de cryptage asymétrique, au contraire du cas précédent, est un cryptosystème
dans lequel l’expéditeur aura autant de difficultés qu’une quelconque tierce partie à connaître
la méthode de déchiffrement. Cela implique la publication par le récipiendaire de données
publiques permettant à quiconque de lui envoyer un message chiffré, qu’il sera le seul à pouvoir
déchiffrer. Ainsi c est publique et accessible à tous, tandis que le récipiendaire est le seul à
détenir la méthode de déchiffrement d. L’intérêt mais aussi la difficulté est de bâtir un tel
système de manière à ce que d soit dure à déterminer quand on ne dispose que de c.

6.2.1 Chiffrement RSA

Le cryptosystème RSA est basé sur le fait qu’il est long de décomposer un nombre en
produit de facteurs premiers. Ce constat a été utilisé de la manière suivante : il est beaucoup
trop coûteux en temps d’essayer de déterminer un facteur premier d’un nombre qui est le
produit de deux nombres premiers gigantesques.

Le chiffrement RSA nécessite à la fois des clés publiques et privées. La première, accessible
à tous, est nécessaire pour construire la fonction c ; la seconde n’est connue que du récipiendaire
qui publie la clé publique associée.

Pour construire ces deux clés, il faut deux nombres premiers gigantesques (distincts), p et
q, dont le produit pq est noté n ; et un élément e inversible dans Z/ϕ(n)Z, dont l’inverse est
notée d.
Clé publique La donnée (n, e).

Clé privée La donnée d.
Avant de nous pencher sur les méthodes de chiffrement et déchiffrement, prenons le temps
d’expliquer comment on génère de telles clés. Nous avons vu dans la section 5 que le groupe
multiplicatif Z/nZ est de cardinal

ϕ(n) = ϕ(p)ϕ(q) = (p− 1)(q − 1).

Afin de trouver un élément inversible e ∈ Z/ϕ(n)Z, il faut donc chercher un élément e qui soit
premier avec (p− 1)(q − 1).

Étant données les clés publiques et privées pour un chiffrement RSA :
Chiffrement Pour tout message x ∈ Z/nZ, le message chiffré correspondant est xe [n]. La

fonction c est tout simplement la fonction d’expression c(x) ≡ xe [n].

Déchiffrement Pour déchiffrer un message y ∈ Z/nZ, il faut calculer yd [n]. La fonction de
déchiffrement est donnée par d(y) ≡ yd [n].
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Remarquez que les deux fonctions, de chiffrement et de déchiffrement, consistent à calculer des
puissances d’un entier modulo n. L’exponentiation modulaire est rapide et facile à calculer, ce
qui est un pré-requis pour que le cryptosystème soit utilisable.

Proposition 6.1. Les données précédentes définissent bien un système de cryptage, i.e. d◦ c =
id.

Démonstration. Supposons tout d’abord que l’on a un élément inversible x ∈ (Z/nZ)×. On
veut montrer que pour un tel x

d
(
c(x)

)
≡ d
(
xe
)
≡ xed ≡ x [n].

Par définition ed ≡ 1 [ϕ(n)]. Cela signifie qu’il existe k ∈ Z tel que

ed+ kϕ(n) = 1.

D’après le théorème 4.4

xed ≡ x1−kϕ(n) ≡ x×
(
xϕ(n)

)−k
≡ x [n].

Remarquez que si k est positif, on regarde une puissance négative de 1, ce qui doit être compris
comme étant une puissance de l’inverse de 1 (qui de toute manière vaut encore 1).
Supposons maintenant que x n’est pas inversible. D’après le théorème des restes chinois :

(Z/nZ)× = (Z/pZ)× × (Z/qZ)× .

Comme les éléments inversibles de Z/pZ et Z/qZ sont tous leurs éléments non nuls, cela signifie
que les éléments non inversibles modulo n correspondent aux couples de la forme (0, x2) avec
x2 ∈ Z/qZ ou (x1, 0) avec x1 ∈ Z/pZ. Si les deux entrées sont 0 le résultat attendu est évident.
Supposons donc que x1 et x2 sont différents de 0. En réutilisant la notation du cas précédent,
on a

(0, x2)
ed ≡ (0, x

1−kϕ(p)ϕ(q)
2 ) ≡

(
0, x2 ×

(
x
ϕ(q)
2

)−kϕ(p)) ≡ (0, x2) [n]

qui est le résultat attendu. Le cas symétrique avec x1 est analogue.

6.2.2 Cryptosystème ElGamal

Le cryptosystème ElGamal repose sur la difficulté de résoudre des équations du type
ak ≡ b [n] pour a, b et n fixés, k étant l’inconnue dans l’équation. Ce problème est ap-
pelé problème de logarithme discret 20. Il est un peu plus complexe à écrire que le chiffrement
RSA.

Le cryptosystème ElGamal est défini au cœur d’un environnement consistant en une clé
publique (p, g) :

— p est un nombre premier modulo lequel le problème logarithmique est difficile à résoudre.
— g est un élément modulo p ayant un ordre 21 suffisamment grand.

De telles données peuvent être générées par le récipiendaire, ou une tierce partie fiable. Avec de
telles données publiques à disposition, le récipiendaire choisit une clé privée a ∈ Z et calcule et
rend disponible sa clé publique A = ga [p]. Donc, ayant dans l’environnement la donnée (p, g)
publique :
Clé privée (Presque) n’importe quel entier a choisi (assez grand).

20. Vous êtes encouragés à demander à vos enseignants en mathématiques pour quelle raison ce problème est
lié aux logarihtmes.
21. Il est recommandé que cet ordre soit un nombre premier.
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Clé publique L’entier A = ga modulo p.

Étant donné un nombre premier p pour lequel le problème logarithmique est suffisamment
difficile, trouver g consiste d’abord à tester si des nombres choisis ont un ordre assez grand.
L’ordre d’un élément g est un diviseur de p− 1. Par exemple, si l’on choisit un nombre premier
de la forme p = 2q+ 1 où q est encore premier, alors l’ordre de g sera parmi 1, 2, q et 2q. Ainsi,
si g2 est différent de 1 modulo p, g sera d’ordre q ou 2q ce qui peut être suffisant.

Avec les données publiques et une clé publique ElGamal :
Chiffrement Pour un message x ∈ Z/pZ, l’expéditeur génère un entier aléatoire k éphé-

mère 22. Le message chiffré est le couple (c1, c2) où c1 = gk et c2 = xAk. La fonction c est
donc définie par l’expression c(x) = (gk, xAk) où k est un entier éphémère.

Déchiffrement Pour déchiffrer un message (y1, y2) ∈ Z/pZ, le récipiendaire calcule (ya1)−1 y2.
La fonction d est donnée par d(y1, y2) = (ya1)−1y2.

Proposition 6.2. Les données précédentes définissent bien un système de cryptage, i.e. d◦ c =
id.

Démonstration. En utilisant les notations précédentes, le but est de prouver

(ca1)
−1 c2 =

(
gak
)−1

xAk = x

La première égalité n’est rien de moins que la définition. Pour la seconde, par construction :

ga ≡ A [p]

ainsi (
gak
)−1

Akx ≡ x [p]

ce qui est le résultat attendu.

Conclusion

Enfin, voici une citation qui résume tout ce qu’il faut retenir de l’arithmétique :

Cet après-midi, en allant à l’école, j’ai rencontré Alceste qui m’a dit : "Si on n’allait
pas à l’école ?" Moi, je lui ai dit que ce n’était pas bien de ne pas aller à l’école, que
la maîtresse ne serait pas contente, que mon papa m’avait dit qu’il fallait travailler si
on voulait arriver dans la vie et devenir aviateur, que ça ferait de la peine à maman
et que ce n’était pas beau de mentir. Alceste m’a répondu que cet après-midi on
avait arithmétique, alors j’ai dit "bon" et nous ne sommes pas allés à l’école.

Le petit Nicolas, Sempé-Goscinny

22. On ne s’en servira qu’une seule fois !
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