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Résumé
Ce document est la référence principale pour le contenu du projet AFIT (Arithmetic
for IT). Ce projet vise a générer du chiffrement de données a ’aide des algorithmes RSA et
ElGamal, dans un but pédagogique. Ce faisant, les étudiants devront assimiler les notions
élémentaires d’arithmétique nécessaires pour générer et manipuler de tels systémes de
cryptage.
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1 Introduction

L’arithmétique est une branche des mathématiques consistant en 1’étude des “nom-
bres”, et plus particulierement des propriétés des opérations traditionnelles — addi-
tion, soustraction, multiplication et divisionE].

En arithmétique des nombres entiers, la divisibilité est une notion au centre de nombreuses
questions : est-ce que deux nombres donnés sont multiples 'un de 'autre 7 Y a-t-il des nombres
spécifiques qui n’ont aucun diviseur non trivial ? Peut-on décomposer un entier donné comme un
produit d’entiers plus simples (voire le plus simples possible) ? Vous connaissez déja la réponses
a certaines de ces questions. Les nombres qui ne peuvent étre divisés que par eux-mémes, leur
opposé ou *1 sont appelés nombres premiers. Ainsi, tout entier peut se décomposer de
maniére unique (si ce n’est 'ordre) comme un produit de nombres premiers.

Ces questions, simples en apparence, sont au coeur des différents usages de I'arithmétique
en informatique. Méme en exceptant le fait que les ordinateurs sont des calculateurs d’entiers,
les questions de divisibilité sont au centre des systémes de chiffrement permettant un échange
d’informations sécurisé entre deux parties; en supposant qu’une troisiéme partie ait acces a
I'information échangée, il sera encore trop difficile de la déchiffrer pour retrouver le message
initial.

L’algorithme de chiffrement le plus connu, RSAP] se base sur le fait que factoriser un
nombre qui est le produit de deux nombres premiers est une question difficile et qui nécessite
beaucoup de ressources, en temps comme en espace. En revanche, calculer des puissances
d’entiers modulo un entier fixé prend beaucoup moins de temps.

Le but de ce projet est de vous faire parcourir I'arithmétique nécessaire pour essayer de
générer des systémes de chiffrement d’une taille raisonnable. Cependant ne vous y trompez
pas; nous serons encore relativement loin des implémentations d’algorithmes de
chiffrement utilisées en réalité.

2 Guide de lecture

Ce document doit servir de référence mathématique pour un projet de programmation
nécessitant des notions élémentaires d’arithmétique modulaire. Il contient des exemples, preuves
et discussions permettant de comprendre la raison fondamentale pour laquelle les résultats
mathématiques utilisés sont énoncés tels quels et pas autrement. Tout ce que vous lirez ici s’y
trouve pour une (bonne) raison, la moindre d’entre toutes étant de mettre un peu de sens dans
un certain nombre d’énoncés apparemment inattendus.

Ceci dit, il n’y a pas besoin de posséder une connaissance en profondeur de tous les aspects
traités dans ce document pour pouvoir rendre un travail satisfaisant sur ce projet AFIT.
N’hésitez pas a chercher de la documentation externe:; ce document doit servir de
trame pour vos propres recherches. Si vous trouvez des références qui vous permettent de
mieux comprendre le sujet et les attentes de votre projet, servez-vous en !

Voici une liste des sujets abordés, classés par priorité (de la plus haute a la plus basse).
C’est un bon ordre de lecture indicatif.

— La section [3| concerne des connaissances de base en arithmétique et doit étre compléte-
ment maitrisée ; une partie de cette section reformule les propriétés et résultats vus en
cours.

— La section [4], jusqu’a la sous-section incluse est d'une importance capitale si vous
voulez étre capable d’écrire vos premiers systémes de chiffrement.

1. https://en.wikipedia.org/wiki/Arithmetic (traduit de I’anglais).
2. d’aprés les initiales de ses inventeurs : Rivest, Shamir et Adleman.
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— La section [0] est le but principal de ce projet AFIT. Méme si 'on mettra plus Iaccent
sur I’algorithme RSA, on attend de vous que vous puissiez implémenter les deux.

— Les sections [4.5] et [f] représentent des défis un peu plus exigeants, il vous est conseillé de
les laisser de coté tant que vos implémentations des cryptosystémes RSA et ElGamal
n’ont pas été testées avec succes.

3 Arithmeétique des entiers

Cette section présente un rappel succinct des sujets abordés en arithmétique élémentaire.
Des primitives 0Caml seront données pour les opérations basiques d’arithmétique que vous
utiliserez dans vos implémentations.

Hypothése 3.1. Nos énoncés se focaliseront sur les résultats concernant les entiers naturels.
Tous peuvent étre étendus au cas des entiers relatifs, mais nous n’en aurons pas besoin ici.

3.1 Division euclidienne

Définition 3.1. Si l'on considére un couple d’entiers naturels (n,p), on dit que p divise n, ce
que l'on note par p | n, ’il existe un entier £ € N tel que n = kp.

Remarque 1. Un entier n est dit pair si 2 | n, sinon il est dit ¢mpair.
Remarque 2. Tout entier divise 0. En effet, pour tout n € N on peut écrire 0 = 0 X n.

Si 'on prend deux entiers naturels au hasard, les chances que I'un soit diviseur de ’autre
sont faibles. Il est cependant possible de pallier le manque de divisibilité par 'opération appelée
division euclidienne.

Proposition 3.2. Pour tout couple d’entiers naturels (a,b) € NxN* il existe un unique couple
(q,7) d’entiers naturels vérifiant

a=0bg+r avecO<r<b.

Terminologie. Le premier élément du couple (g, r) est appelé quotient de a par b, le second est

appelé reste dans la division euclidienne de a par b. On I'abrége aussi en reste de a modulo
b.

Démonstration. La proposition précédente contient en fait deux résultats, I'un concernant 1'uni-
cité, 'autre 'existence.
Supposons qu’il existe deux couples (q,r) et (¢',r’) vérifiant la propriété ; alors

bg+r=0b+r"=blg—q)=1r"—r

Maintenant, le terme de droite appartient a l'intervalle entier [—(b — 1);b — 1], cependant ce
doit étre un multiple de b. Ce ne peut donc étre que 0. Ainsi r =7/, d’ou ¢ = ¢'.
L’existence est basée sur ’algorithme suivant :

— Si 0 <a<balors (0,a) vérifie la propriété

— Sinon, on ajoute 1 au quotient puis on examine la division euclidienne de a — b par b.
Cet algorithme se termine en un nombre fini d’étapes & cause d’une propriété structurelle de
N : toute partie non vide de N admet un élément minimal. Il faut donc montrer que ’ensemble
{¢ € N | a—bg < b} n’est pas vide. L'intuition semble indiquer que c’est bien le cas, puisque
le membre de gauche de la condition peut étre rendu aussi négatif que 'on veut. C’est en
effet vrai, mais cela vient d’un fait important que nous n’avons pas montré. Sachant qu’il est
non vide, il admet un élément minimal ¢*. Pour ¢* 'expression a — bg* ne peut donc qu’étre
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positive. En effet, comme ¢* est le plus petit élément vérifiant a —bg* < b alors a—b(¢g*—1) > b.
Remarquez que la derniére inégalité est obtenue en ajoutant b au membre de gauche. Ainsi,
les deux inégalités ne peuvent pas étre vraies simultanément si a — bg* n’est pas positif, car
sinon, en ajoutant b au membre de gauche on ne pourrait pas obtenir un résultat plus grand
que b. O

En 0Caml il n’y a pas de primitive qui calcule une division euclidienne d’un seul coup, mais
deux opérateurs infixes qui calculent respectivement le quotient et le reste : / et mod.

Remarque 3. En utilisant la caractérisation donnée par la division euclidienne, “b | a” équivaut
a “ le reste dans la division euclidienne de a par b est 0”. Ainsi, pour tester si un nombre a est
un multiple de b en 0Caml on écrit :

let est_divisible a b = (a mod b = 0) ;;

3.2 Primalité

Définition 3.2. Un nombre naturel strictement supérieur a 1 est dit premier s’il n’admet
comme diviseurs (positifs) que 1 et lui-méme.

Vérifier si un nombre donné n est premier est un probléme difficile; il n’y a pas d’autre option
que de parcourir la liste des entiers naturels inférieurs et de tester la divisibilité. En réalité
il suffit de s’arréter a |y/n]; en effet, si k& | n alors n/k divise lui aussi n. Si 'on écrit les
couples (k,n/k) de diviseurs de n on voit qu’a partir de y/n on obtient les couples symétriques,
c’est-a-dire dont les entrées sont dans ’ordre inverse. Par exemple, pour les diviseurs de 36 on
obtient

(1,36) (36,1)

(2,18) (18,2)

(4,9)  (9,4)

(6,6)

L’importance des nombres premiers apparait grace au résultat fondamental suivant :

Théoréme 3.3. Tout nombre naturel non nulP|n peut étre décomposé en un produit de nombres
premiers. Cette décomposition est unique si [’on ne tient pas compte de l’ordre des termes.

Terminologie. Un nombre premier qui apparait dans la décomposition de n est appelé facteur
de n. On parle ainsi souvent de “décomposition en facteurs premiers”.

Ce théoréme énonce grosso modo qu’il suffit de connaitre les nombres premiers pour com-
prendre 'architecture des entiers naturels. Le fait est que générer des nombres premiers d’une
part, reconnaitre si un nombre est premier d’autre part, sont des problémes relativement com-
pliqués. On peut se consoler en considérant un probléme plus simple a résoudre, celui de savoir
si deux entiers naturels choisis ont des facteurs premiers en commun.

Définition 3.3. Deux entiers naturels non nuls sont dits premiers entre eux s’ils n’ont
aucun facteur premier en commun.

Pour résoudre le probléme que nous venons d’introduire, nous allons définir un nouveau
concept : le PGCD de deux entiers.

Définition 3.4. Le PGCD (Plus Grand Commun Diviseur) de deux entiers non nuls a et b est
le plus grand entier d vérifiant d | a et d | b.

3. cela inclut donc 1 que 'on peut écrire comme un produit vide. Pour rappel, un produit vide représente
I’élément neutre de la multiplication, c¢’est-a-dire 1.
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Avant d’aller plus loin, il reste un point a clarifier : pourquoi un tel entier existerait-il bien ?

— 1 vérifie toujours les deux propriétés, ce qui signifie que 1’ensemble des entiers naturels
vérifiant ces deux propriétés est non vide.

— Tout entier vérifiant ces propriétés est par ailleurs inférieur & min{|al, |b|}, ce qui im-
plique que ’ensemble est majoré. Ce qui nous raméne a la propriété fondamentale de N
selon laquelle toute partie non vide et majorée de N admet un élément maximum.

Notation. Le PGCD de deux entiers naturels non nuls a et b est noté a A b.

Proposition 3.4. Deux entiers naturels non nuls a et b sont premiers entre eux st et seulement
staNb=1.

3.3 Algorithme d’Euclide

Cet algorithme est crucial pour tout ce qui concerne les applications de I'arithmétique en
informatique. C’est grace a lui notamment que 1'on peut générer des clés publiques et privées
pour 'algorithme RSA, ou encore que 'on peut paralléliser les calculs d’entiers.

L’idée de cet algorithme se base sur la remarque suivante : si a et b sont deux entiers naturels
non nuls, leur division euclidienne donne un couple (g, ) d’entiers naturels tels que

a=bg+r 0<r<b. (1)
Si d divise a et b alors il divise aussi a — bq; si a = kd et b = {d,
a—bq=kd—qgld=(k—ql)d.

Ainsi, d divise r. Cela est vrai pour n’importe quel diviseur commun de a et b, et plus parti-
culierement pour leur PGCD. Supposoons alors que ’on répéte ce procédé : en notant ry = a,
ry =0b, g1 = q et ro = r, ’équation devient

ro=qri+rs  0<r<mn (2)
ou chaque diviseur de ry et r; est également un diviseur de 5. En itérant

Gn+1 = rn/rn+1
Tpio = T, mod ryiq

on obtient une suite de relations via divisions euclidiennes successives

ro = qir1 + T 0<ra<m
o= @Ty + T3 0<r3<m
Tn—1 = ({4pTn + T'n+1 0 S Tnt1 < Tp

A chaque niveau de ce systéme d’équations, tout diviseur commun de 7,1 et 7, est un diviseur
de r,.2. De plus, a chaque niveau le reste r,, est un entier strictement inférieur au reste précédent
— a moins que celui-ci ne soit déja 0. Tous les restes obtenus sont des entiers positifs, il y a
donc nécessairement une étape a laquelle on atteint 0. Notons ¢ I'indice du dernier reste non
nul dans la suite précédente. On a alors

ro = @in + 0<ra<m

L = @r2 + T3 0<r3<mr
Tn—1 = anTn + T'n+1 0 < Tyl < Ty (3)
Te—o = Q-1Te—1 + T¢ 0<r, <req

Te—1 = qeTy
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Regardons ces équations de bas en haut. Le dernier reste non nul r, divise r,_;. D’apres la
ligne précédente, il doit aussi diviser r,_5. En remontant ainsi toutes les équations, on se rend
compte que ry divise rg et rq, c’est-a-dire a et b. En conséquenceﬂ, re | a Ab. Silon descend le
systéme d’équations maintenant, on voit vite par récurrence que tout diviseur d commun a r
et 1 divise aussi ry, c’est donc le cas pour a A b. On obtient donc a Ab | ry et vice versa ; ainsi
rg=aAb.

Proposition 3.5. Le dernier reste non nul obtenu par l’algorithme précédent est le PGCD des
deuz termes de départ.

Remarque 4. 1l est légitime de se demander combien de divisions euclidiennes successives on doit
effectuer au maximum pour obtenir le PGCD de deux entiers naturels. Un majorant évident
est b, la suite (r,,) des restes étant strictement décroissante de premier terme b. Il existe en fait
une bien meilleureE] approximation supérieure, qui est 2log,(b) + 2. Il n’est pas nécessaire de
comprendre comment obtenir ce résultat, il donne cependant une bonne idée de la vitesse de
I’algorithme d’Euclide.

Remarque 5. Déterminer si deux entiers non nuls sont premiers entre eux revient a exécuter
I’algorithme d’Euclide et a trouver 1 comme dernier reste non nul.

3.4 Théoréme de Bézout

Cette sectionest dédiée au théoréme de Bézout, qui énonce 'existence d’une combinaison
diophantienneff| de deux entiers donnés égale & leur PGCD ; c’est-a-dire que le PGCD de deux
nombres peut s’écrire comme somme (différence) de multiples entiers de ces deux nombres.

Théoréme 3.6. Pour tout couple (a,b) d’entiers naturels non nuls, il existe[] un couple d’en-
tiers relatifs (u,v) vérifiant
ua + vb =a Nb.

Terminologie. De tels entiers u et v sont appelés coefficients de Bézout associés a a et b.

Démonstration. La preuve est constructive et basée sur 'algorithme d’Euclide. Elle consiste
essentiellement en une réécriture des équations 3l En isolant a droite les restes des divisions
successives on obtient

a — Qb = 7
b - qara = T3
(4)
Ti—g — Qe—1T¢—1 = aAb

Si ’on parcourt ce systéme en remontant, on voit qu’il est & chaque fois possible d’exprimer les
restes en fonctions des deux restes précédents ; en utilisant cette propriété de maniére transitive
on peut donc exprimer tous les restes en fonction de a and b. Cela peut également étre montré

4. En réalité, on n’a pas encore expliqué que tout diviseur commun divise le PGCD. Ceci dit, méme sans
utiliser cette propriété, on obtient r; < a A b, ce qui suffit pour cette preuve : au lieu de conclure a I’égalité par
divisibilité réciproque, on utilise des inégalités réciproques.

In(b)

In(p
4 un peu moins de 5 fois le nombre de chiffres de b en base 10. L’approximation donnée n’est pas si mauvaise

5. on peut méme (théoréme de Lamé) obtenir log,,(b) soit

, ol  désigne le nombre d’or ; cela correspond

. 3 . . .
puisque cela revient & un peu moins de 3 loga(b). Cette complexité ne tient pas compte des étapes de conclusion,

d’ou le +2 dans la formule donnée.
6. ou combinaison entiére
7. un tel couple n’est jamais unique
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en descendant par une récurrence finie. Voici une maniére un peu plus visuelle de le Constaterlﬂ.
Regardez les trois équations qui suivent, dont la derniére est la premiére équation de notre
algorithme [4] :

lxa — 0xb = To
Oxa — 1xb = n (5)
Ilxa — ¢ xb = nr

Remarquez que I'on obtient la derniére équation en 6tant ¢; fois la seconde a la premiére. En
fait, ce schéma se propage jusqu’a ce que le PGCD apparaisse dans le membre de droite de
'équation ; par exemple, pour la division euclidienne de r par 75 (la seconde équation de {4)),
en soustrayant a la seconde équation ¢ fois la troisiéme dans [5| on obtient

1xa + 0xb =
Oxa + (—1) xb =n (6)
lxa + (—q1) x b = 1y

(—q2) xa + (=1+qq)xb = r;

En continuant étape par étape, en effectuant les divisions euclidiennes des restes successifs (les
membres de droite) on fait finalement apparaitre une relation entre a, b, et a A b qui s’écrit
donc comme une combinaison entiére des deux. Si 'on désigne par (u,) et (v,) les suites de
coefficients respectivement associés a a et b, on obtient des définitions récursives de ces deux
suites données par la relation :

{un—i-l = Up—1 — Qnln (7)

Un+1 = Un—1— (4nln

Cette relation sera le point de départ d’'une implémentation convenableﬂ de l'algorithme de
Bézout que vous devrez essayer de réaliser. O

Corollaire 3.7. Deux entiers naturels a et b sont premiers entre eux si et seulement s’il existe
un couple de relatifs (u,v) vérifiant

ua 4+ vb = 1. (8)

Démonstration. Si a et b sont premiers entre eux, alors a A b = 1. D’apreés le théoréme il
existe un couple (u,v) vérifiant la relation attendue. Maintenant s’il existe une relation telle
que la relation [§] alors tout diviseur commun de a et b est aussi un diviseur de 1. Puisque a A b
est un diviseur positif de 1, il ne peut étre que 1; ainsi a et b sont premiers entre eux. O

Remarque 6. Nous avons déja brievement évoqué la complexité de ’algorithme d’Euclide. Celle
de I'algorithme étendu qui donne les coefficients de Bézout est similaire en temps[l] Ainsi, nous
avons bien un algorithme efficace pour déterminer si deux entiers naturels sont premiers entre
eux. Mais ce n’est qu'une des nombreuses applications de cet algorithme ; nous y reviendrons
plus tard.

%4 Arithmeéetique modulaire

Les entiers ne sont pas les seuls objets mathématiques sur lesquels on peut utiliser les
résultats d’arithmétique; bien qu’au départ prévue pour les nombres, cette théorie s’adapte

8. qui, de plus, permet de I'implémenter !
9. la méthode naive qui consiste & faire toutes les divisions puis remonter serait une perte de temps, mais
surtout d’espace phénoménale!
10. regardez I’espace mémoire supplémentaire nécessaire en analysant votre implémentation
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a beaucoup d’autres objets partageant certaines propriétés structurelles avec les entiers. En
particulier, la structure principale dans laquelle on utilise I'arithmétique est celle que 'on
appelle un anneau. L’ensemble Z des entiers relatifs peut étre muni d’une telle structure, mais
c’est le cas de nombreux autres ensembles. Nous allons en étudier quelques exemples simples
sur lesquels nous nous contenterons d’effectuer des calculs de base.

4.1 Jour de la semaine

Avant de nous plonger au coeur de I'arithmétique modulaire, prenons le temps d’examiner
un exemple basique d’application de cette théorie : le calcul du jour de la semaine selon la date.

Question 1. Supposons que nous soyons un lundi aujourd’hui ; comment calculer quel jour
de la semaine nous serons dans 37 jours?

Une maniere simple de répondre a cette question est de numéroter les jours de la semaine de 0
a 6 en commencant par le jour d’aujourd’hui : lundi. Tous les 7 jours on retombe sur un lundi
—certains d’entre vous le savent peut-étre déja :-p . La division euclidienne de 37 par 7 donne

37T=5xT7+42.

On repasse donc 5 fois par lundi avant de continuer jusqu’a mercredi, qui est le jour portant
le numéro 2. Ainsi, le seul nombre pertinent dans cette question est 37 mod 7. Cela est vrai
dans le cas général : si 'on compte n jours & partir du lundi initial, on arrive au jour portant
le numéro n mod 7 (c’est un entier entre 0 et 6).

Essayons de formaliser tout ¢a pour expliquer de maniére plus rigoureuse comment calculer
ainsi les jours de la semaine. On va partir du premier jour de notre ére d’aprés le calendrier
grégorien : le 1° janvier de I’an 0001 était un samedi['! On note W ’ensemble des indices
représentant les jours de la semaine :

W =140,1,2,3,4,5,6},
en initialisant en faisant correspondre le 0 au samedi. On va de plus supposer que le nombre

de jours avant et aprés le 1° janvier 0001 est infini["%]

Terminologie. On appellera date le nombre de jours avant ou aprés le « zéro », c’est-a-dire
I'origine fixée au 1°" janvier 0001, afin d’éviter 'ambiguité entre le jour de la semaine que 'on
cherche a calculer et la date.

Le probléeme principal peut alors étre reformulé en :

Quel est le jour de la semaine correspondant & une date d € Z donnée ?

Nous avons déja donné la réponse a cete question plus haut : il suffit de trouver le reste
de la division euclidienne de d modulo 7.

Remarque 7. Attention : la primitive 0Caml mod ne donne pas le résultat attendu si I’argument
préfixe (i.e. celui de gauche) est négatif. La fonction 0Caml mod renvoie 'opposé du reste de
la division de la valeur absolue de I'argument préfixe si celui-ci est négatif, ce qui ne coincide

11. well-known fact :-)
12. Ce qui, en ce qui concerne les jours avant, est difficile & concevoir, et en ce qui concerne les jours aprés,
est plutot mal parti ...
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pas avec la définition de la division standard (euclidienne) des entiers : en effet celle-ci garde
la méme déﬁnitionlﬂ pour les entiers relatifs que pour les naturels, le reste est donc toujours
un nombre positif.

Les calculs utilisés pour déterminer le jour de la semaine correspondant a une date im-
pliquent un certain nombre de compatibilités heureuses, en ce qui concerne ’addition et la
multiplication.

Par exemple, on pourrait se demander si le 3 jour aprés un vendredi (6) est le méme
que le (37 mod 7)®¢ jour aprés un vendredi. Le jour que nous recherchons est le 43°™¢ jour
apres samedi, on peut alors écrire

7éme

43=6xT7+1
ce qui nous dit que 1'on cherche un dimanche. Nous avons fait I'opération suivante :
(37 + 6) mod 7.
Si l'on essaie le calcul (qui correspond a la suggestion précédente) :
((37 mod 7) + (6 mod 7)) mod 7

on retrouve le méme résultat. C’est un fait général. Si I'on se donne deux dates d; et ds, on
peut écrire ainsi leurs divisions euclidiennes par 7 :

di=TXq+mn (9)
do =T X qo + 19 (10)
En additionnant ces deux équations on obtient :
(di+dy) =7 x (@1 + q2) + (11 +12).
Mais ici, (r1 4 r2) n’est pas forcément plus petit que 7. Si I'on refait la division
(ri+re) =7Xxs+t

on obtient
(di+dy)) =7Tx (1 +q+s)+t

ol t est positif et strictement inférieur a 7. D’aprés les deux derniéres relations, on peut déduire
que
(Tl + 7‘2) mod 7 = (dl + dg) mod 7

ce qui est exactement ce que nous avons conclu dans notre exemple.

Il se passe la méme chose si 'on utilise des multiplications. Supposons que l'on veuille
déterminer quel jour nous serons aprés 3 périodes de 32 jours. Cela fait 96 jours, le jour en
question est donc donné par 96 mod 7 = 5 : c’est un jeudi. On obtient exactement le méme
résultat si ’'on fait

((83 mod 7) * (32 mod 7)) mod 7
Cette propriété également est toujours vraie; en réutilisant les équations [9 on peut écrire :
didy =T x (Tquqa + qor1 + qu72) + 1172

mais encore une fois 179 n’est pas forcément positif et strictement inférieur & 7. En utilisant
une division supplémentaire
riro=7Xs+t

13. le reste de la division de a par b est compris entre 0 et |b] — 1
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on parvient & la division euclidienne
didy =T x (Tq1q2 + qar1 + qura + 8) + 1

dont on peut déduire que
dids mod7 = rirs mod 7.

En résumé :

— Le jour de la semaine associé a une date d est le reste dans la division euclidienne de d
par 7.

— Le jour de la semaine atteint aprés deux périodes d; et ds est le reste modulo 7 de la
somme d; + do, ou de maniére équivalente la somme modulo 7 des restes de d; et ds
modulo 7.

— Le point précédent est également vrai pour 'opération de multiplication. Le reste de la
multiplication de deux nombres d; et ds modulo 7 est le méme nombre que celui obtenu
en multipliant les deux restes de d; et ds modulo 7, puis en prenant le reste modulo 7
du résultat.

Les opérations dont nous venons de parler sont une manifestation simple de propriétés plus
générales, et de constructions d’importance capitale en arithmétique. Elles jouent un role tres
important en ce qui concerne la programmation entiere.

4.2 L’anneau Z/nZ

Nous n’allons pas définir formellement ce qu’est un anneau. Il suffit ici de savoir que c’est
un ensemble muni de deux opérations binaires, I’addition et la multiplication qui ont les
mémes propriétés[lz] que 'addition et la multiplication d’entiers. L’anneau sur lequel nous allons
travailler est basé sur un ensemble fini. Ceci est d’'une importance capitale du point de vue
machine : tout ce qui se passe dans un tel anneau devrait étre implémentable en machine — si
ce n’est en ce qui concerne les problémes de mémoire (dépassements par exemple).

Définition 4.1. Soit n > 1 un entier positif. L’anneau Z/nZ est 'ensemble
Z/nZ ={0,...,n—1} =[0;n — 1]

muni des deux opérateurs binaires @ et ® définis comme suit : étant donnés deux éléments x
et y appartenant a Z/nZ :
r®y=(r+y) modn (addition)

r®y=(xrxy) modn. (multiplication)

Exemple 4.1. L’exemple le plus simple est n = 2. Dans ce cas Z/27Z = {0, 1}. L’addition et
la multiplication sont simplement données par les régles de calcul suivantes :

©|0]|1 ®|0]1
0101 0(00
1/1(0 1101

14. associativité de ’addition et de la multiplication, distributivité de la multiplication sur ’addition, com-
mutativité de 'addition. La multiplication n’est pas forcément commutative (dans le cas étudié elle le sera). De
plus, ces deux lois admettent un élément neutre (0 de ’addition et 1 de la multiplication) et chaque élément
admet un opposé par ’addition.
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Exemple 4.2. Le cas n = 3 représente l'ensemble {0,1,2} muni des lois d’addition et de
multiplication suivantes :

©|0]1]2 ®|0[1]2
010112 0(0[0]0
111120 11011]2
212|101 210121

En pratique, on est souvent intéressé par la projection d’'un entier quelconque modulo un
entier positif donné. On peut représenter cette approche du probléme par la fonction :

{Z — Z/nZ
T
z —— x modn

Exemple 4.3. L'image d’un élément = € Z par 7, nous dit si z est pair ou impair. Si mo(z) = 0
alors x est pair, il est impair sinon. Si 'image de = par 73 est 0, alors = est divisible par 3. Si
m3(x) = 1 alors = est de la forme 3k 4+ 1 pour un certain k € Z.

Notation. 11 est fréquent de noter z,, la quantité m,(z) ou  mod n. Selon le contexte (s’il n’y
a pas d’ambiguité), on peut méme se passer de l'indice.

De nombreuses questions en arithmétique moderne se résument a :

Soit x un entier dont les restes z,, modulo un grand nombre d’entiers positifs n vérifient
une propriété P. Est-ce que x satisfait aussi P 7

Exemple 4.4. Soit P la propriété «étre plus petit que 100». Prenons un entier x, si ’on regarde
les quantités x, pour n < 100 on ne peut absolument rien en déduire quant a la question de
savoir si x < 100. En effet, n’importe quel nombre aura un reste inférieur & 100 si l'on fait la
division modulo un nombre inférieur & 100. De méme, le fait que Z19; soit plus petit que 100 ne
signifie pas que x 'est aussi. Par exemple 102;9; = 1. En réfléchissant a la question, on se rend
compte que si z < 100 alors tous les restes modulo n > 101 seront égaux a z. La réciproque(’”]
est également vraie : si tous les restes z,, pour n > 101 sont égaux a x alors x < 100.

Remarque 8. L’exemple précédent est un exemple un peu stupide, pour des questions de re-
cherche plus précises, n’hésitez pas & demander !

Les compatibilités mises en lumiére dans la section [£.I} a propos du comportement de
I’addition et de la multiplication par rapport aux opérations de modulo, sont des propriétés
générales que 'on exprime par : soient deux entiers x et y dans Z alors

(T +y), = Tn ® Yn (addition)

(zy), = Tn @ Gn. (multiplication)
Notation. Dans ce domaine, les abus de notation sont fréquents. La plupart du temps, la barre
~ et l'indice sont sous-entendus. C’est également les cas des notations @ et ® qui ne sont pas
standard ; on les remplace simplement par + and —. Dans la suite, nous ne les utiliserons plus.
Cela mis a part, soit on gardera a la fois le - et l'indice ou on laissera tomber les deux, on
utilisera aussi la notation suivante : pour x et y dans Z alors I'égalité

Tp = UYn

15. intéressante pour sa contraposée : s’il existe un nombre n > 101 tel que Z,, # x alors x > 100.
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s’écrit aussi

ou encore
T =nY.

L’égalité est remplacée par le symbole = et [n] indique que nous regardons les restes de = et
y modulo n, ce qui correspond & T, et g, dans Z/nZ. Ainsi, les compatibilités précédentes
peuvent étre réécrites de la maniére suivante :

T4y =T, + Y [0 (addition)

Y = TpYn 0] (multiplication)

4.3 Eléments inversibles de Z/nZ

Si l'on se penche sur la multiplication des nombres rationnels ou réels, on sait que pour
tout nombre non nul x € R* il existe un nombre y tel que zy = 1. Par exemple, si x = 2 alors
y = 0.5. En général, ce n’est pas le cas dans Z/nZ. Voici par exemple la table de multiplication
de Z/AZ :

®
0
1
2

(e New) New) Raw]
[eo) B (V) Naw) I \V]
W Ol W

W N =D =

310 211

On peut voir que tout élément « différent de 0 et 2 admet un homologue y tel que zy =1 [n].
Le fait est que 2 n’est pas nul mais n’admet pas de tel homologue, un comportement différent
de ce a quoi vous étes habitués.

Définition 4.2. Un élément x € Z/nZ est dit inversible s’il existe y € Z/nZ tel que zy = 1 [n].

L’élément y est alors unique et appelé inverse de = dans Z/nZ.

Notation. L’inverse d’'un élément inversible x € Z/nZ est notée x!. L’ensemble des éléments
inversibles de Z/nZ est noté (Z/nZ)”. On note aussi p(n) le nombre d’éléments inversibles de
Z/nZ; cela correspond au cardinal de (Z/nZ)™. Dans la littérature, ¢(n) est appelé indicatrice
d’Euler de n.

Soit = un élément inversible de Z/nZ dont l'inverse est y. Par définition cela signifie xy =
1 [n]; de maniére plus explicite, il existe k € Z tel que

xy +kn = 1. (11)

Si 'on se reporte au théoréme de Bézout, cela implique que n et x sont premiers entre eux.
Réciproquement, si x et n sont premiers entre eux, il existe une relation du type [II, modulo n
cela montre que x admet en y une inverse.

Proposition 4.1. L’ensemble des éléments inversibles de Z/nZ est ’ensemble des éléments de

{0,...,n— 1} qui sont premiers avec n. Cet ensemble est appelé groupe multiplicatif de Z/n’Z.
Corollaire 4.2. Sip est un nmobre premier, tous els éléments de {1, ..., p—1} sont inversibles,
1.e.

(Z/pZ)* ={1,...,p—1}.
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Démonstration. Tout entier qui n’est pas un multiple de p est premier avec p. C’est en parti-
culier le cas de tout élément non nul de Z/pZ. []

Ecrire une fonction qui teste si un entier est inversible modulo n consiste a utiliser pro-
prement 'algorithme d’Euclide; nous sommes déja capables de faire ceci. La recherche peut
étre facilitée drastiquement dans un certain cas, si 'on connait un peu mieux les propriétés
intrinséques des éléments de (Z/nZ)™.

Proposition 4.3. Six ety sont deux éléments inversibles modulo n alors xy est aussi inversible
modulo n.

1 1

Démonstration. Notons x71 et y~1 les inverses respectives de z et y. Le produit y1z~! est
alors I'inverse de xy. O

Ainsi, sil’on a trouvé un élément inversible, toutes les puissances de cet élément sont encore
des éléments inversibles.

Exemple 4.5. Par exemple, dans le cas de Z/5Z le groupe multiplicatif est {1,2,3,4}. Les
puissances de 1 ne permettent de trouver que 1. Mais les puissances de 2 modulo 5 engendrent
I'ensemble {1, 2, 3,4}.

On n’aura pas toujours la chance de pouvoir trouver un entier dont les puissances engendrent
le groupe multiplicatif, i.e. qui permet de trouver tous les éléments dudit groupe.

Exemple 4.6. Dans le cas de Z/8Z, le groupe multiplicatif est {1, 3,5, 7}. On peut vérifier que
le carré de chacun des éléments de (Z/8Z) vaut 1. Si I'on cherche donc parmi les puissances
d’un élément inversible x, ici on ne trouve aucun autre élément inversible, mis a part 1 dans le
cas ou x # 1.

Le sous-ensemble du groupe multiplicatif composé des différents éléments que 'on peut
engendrer en cherchant parmi les puissances d'un élément inversible donné a un grand intérét
en arithmétique modulaire (modulo n). De tels sous-ensembles peuvent par exemple étre une
bonne mesure de la solidité d’une clé privée RSA. Pour le cryptosystéme ElGamal, des données
publiques valides consistent partiellement en un élément qui engendre le groupe multiplicatif
d’'un anneau Z/nZ spécifique. La section qui suit se consacre a regarder plus en détail les
puissances d’éléments inversibles dans Z/nZ.

4.4 Petit théoréme de Fermat

Définition 4.3. Soit x un élément inversible de Z/nZ (i.e. un élément de (Z/nZ)™). On appelle
ordre de x le plus petit k € N* tel que 2% = 1 [n]. L’ordre de z modulo n est noté ord, ().

Exemple 4.7. Dans le cas n = 8, les éléments inversibles de Z/8Z sont 1, 3, 5, 7. Le premier
est d’ordre 1, les autres d’ordre 2.

Exemple 4.8. Le groupe multiplicatif de Z/9Z est composé des éléments 1, 2, 4, 5, 7 et 8,
d’ordres respectifs 1, 6, 3, 6, 3 et 2.

L’article défini mis en valeur dans la définition suggere qu’il existe toujours un tel plus
petit entier strictement positif et donc que 'ordre de = est bien défini. Cela exprime de maniére
implicite le fait que 'ensemble {k € N* | 2% = 1 [n]} n’est pas vide. Bien que nous ayons vérifié
ce fait sur deux exemples, nous n’avons pas jusqu’a présent démontré que cela était forcément
le cas.

Théoréme 4.4. Soit x un élément inversible de Z/nZ. Alors z¥™ =1 [n].
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Démonstration. Afin de simplifier les notations, notons G, le groupe multiplicatif (Z/nZ)™.
La preuve que nous donnons ici se base sur une compréhension structurelle de 1'action des
éléments de G,, sur leur environnement. Soit m, la fonction de G, vers GG, qui a y associe
xy. Par exemple, avec n = 9 et © = 2 la fonction my a pour domaine (et ensemble d’arrivée)
Gy = {1,2,4,5,7,8}. Elle envoie la liste d’éléments [1;2;4;5;7;8] vers la liste [2;4;8;1;5;7],
c’est-a-dire :

1 — 2
2 = 4
4 — 8
5 — 1
7T — 5
8 — 7

On peut vérifier que mo définit ainsi une bijection de Gg vers lui-méme; c’est ce que nous
appellons une permutation. L’ensemble image de mqy est ici égal a Gy. Cette observation se
généralise : m, est toujours une permutation de G,.

Pour montrer que m, est injective, supposons qu’il existe deux éléments y; et yo de G, tels
que my(y1) = my(ys). Cela signifie :

xy = Yy [n].

1

Par définition x est inversible,en multipliant la relation précédente par =" on obtient alors

Y1 =y [n].

Pour constater que m,. est surjective, on peut voir que pour tout élément y de GG,,, I’élément
t = a2ty de G, vérifie m,(t) = y.

Le fait que m, soit bijective implique 1’égalité des ensembles

{xy|yEGn}:{y|y€Gn}

en conséquence, le produit de tous les éléments de I'ensemble de gauche et celui de tous les
éléments de l’ensemble de droite sont égaux (logique vu que les ensembles contiennent les

mémes éléments). Ainsi[lY
m%"(n)( I1 y> = ( I1 y> [n].
yeGn yeGn

Comme le produit d’éléments inversibles est encore inversible, en multipliant la relation précé-
dente par 'inverse du terme de droite on obtient

¥ =1 [n],
ce qui est le résultat attendu. O

Corollaire 4.5 (Petit théoréme de Fermat). Soit p un nombre premier, et soit x un élément
non nul de 7/pZ ; alors
=1 pl.

Démonstration. L’ensemble des éléments inversibles de Z/pZ est encore I'ensemble de ses élé-
ments non nuls, dans ce cas-1a p(p) =p — 1. ]

Remarque 9. Le petit théoréme de Fermat s’énonce également ainsi : pour tout z de Z/pZ,
P = z [p]. Cet énoncé est équivalent au précédent si x est inversible : en multipliant cette
équation par x~! on retrouve Si x n’est pas inversible, il est nul, et la relation donne alors
0 =0 [p] ce qui est encore vrai.

16. Cette preuve, simple, utilise la commutativité de la multiplication. Le résultat reste vrai méme si 'on
enléve cette hypothése.
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Dans les deux exemples et on a p(8) = 4 et ¢(9) = 6. Les ordres des éléments
inversibles de Z/8Z sont tous des diviseurs de ¢(8). C’est également le cas pour les inversibles
de Z/97Z; en fait c’est un résultat général.

Proposition 4.6. Soit x un élément inversible de Z/nZ. Un élément m € N* vérifie 2™ = 1 [n]
si et seulement si ¢’est un multiple de ord, (x).

Démonstration. Notons k 'ordre de x modulo n. La division euclidienne de m par k donne la
relation m = kq 4+ r ot 0 < r < k. Ainsi, on obtient

™ = 2" [n] (12)

1=2a"[n]. (13)

Si r était strictement positif, alors r vérifierait 2" = 1 [n] tout en étant strictement plus petit
que k, ce qui contredirait la définition de k (qui est le plus petit entier strictement positif tel
que z* = 1 [n]). Nécessairement r = 0, et m est donc un multiple de l'ordre de z. O

Corollaire 4.7. L’ordre d’un élément inversible de Z/nZ divise o(n).

Démonstration. Cela découle du fait que 2¥™ = 1 [n], d’aprés . n

4.5 Théoréme des restes chinois

Il est fréquent en mathématiquesd’essayer de comprendre un objet en le décrivant comme
étant composé de plusieurs sous-objets plus faciles a comprendre. C’est également une philo-
sophie trés répandue en informatique : ¢’est plus ou moins le principe des stratégies de “diviser
pour régner” ; sans parler du fait qu’un logiciel est principalement pensé comme une série de
composants reliés, chacun voué a une tache particuliére. Dans le cas de l'arithmétique mo-
dulaire, il est possible de décomposer de nombreux ensembles Z/nZ en produits cartésiens
d’ensembles Z/mZ plus petits : c’est ce que nous allons évoquer dans cette section.

Soient m et n deux entiers premiers entre eux, plus grands que 1. ON consideére la fonction

(G
b Z/nmZ — Z/nZ X L]/mZ
’ x — (Tpy Tpn)
qui & x € {0,...,nm — 1} associe le couple formé de ses restes modulo n et modulo m respec-
tivement, ce qui donne un couple de Z/nZ x Z/mZ.

Exemple 4.9. Considérons par exemple le cas (n,m) = (2,3). La fonction ¢ a pour domaine
de départ Z/6Z et d’arrivée Z /27 x Z/37Z. Voici la liste des images des 6 ¢léments de Z/6Z

par v :

0 — (0,0)
1 — (1,1)
2 — (0,2)
3 = (1,0)
4 — (0,1)
5 — (1,2)

On remarque tout de suite que cette fonction est bijective ; ainsi Z/67Z contient autant d’infor-
mation que Z/27 x 7./3Z. Le résultat est encore plus puissant : les opérations arithmétiques sur
7./6Z se reflétent sur Z /27 x Z/3Z via la fonction . Définissons les opérations d’addition et
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de multiplication sur Z /27 x 7 /37 comme suit : pour tout (x, x2) et (y1,ye)dansZ /27 X /37
on a

(z1,22) + (Y1, ¥2) = (21 + Y1, T2 + o) (addition)
(z1,22) X (y1,92) = (T1y1, Taya). (multiplication)
Ce sont en fait les addition et multiplication coordonnée par coordonnée. Voici les tables d’ad-

dition et de multiplication pour Z/6Z muni des opérations usuellles, et pour Z/27 x Z/3Z avec
les opérations que 'on vient de définir.

7.)6Z 7.)27 x 7./37.
+lol1|2]3]4]5 + 1(0,0)](1,1) ] (0,2) | (1,0)] (0,1) | (1,2)
0/0[1]2]3[4[5 (0,0) ] (0,0) [ (1,1) [ (0,2) | (1,0) [ (0,1) [ (1,2)
1]1[2]314[5]0 (1,1) [ (1,1) [ (0,2) [ (1,0) ] (0,1) [ (1,2) | (0,0)
2 (2]314(5]0]1 (0,2)](0,2) [ (1,0) [ (0,1) ] (1,2) [ (0,0) | (1,1)
313[4(5(0]1]2 (1,0) | (1,0) [ (0,1) [ (1,2) ] (0,0) [ (1,1) [ (0,2)
Al4]5]0(1[2]3 (0,1) [ (0,1) [ (1,2) [ (0,0) [ (1,1) ] (0,2) ] (1,0)
5(5]/0(1]2]34 (1,2) [ (1,2) [ (0,0) [ (1,1) ] (0,2) [ (1,0) [ (0,1)
x|[0|1]2]3]4]5 x [ (0,0) | (1,1)](0,2) | (1,0) | (0,1) ] (1,2)
0/0[0[0]0[0]0 (0,0) | (0,0) ] (0,0) | (0,0) | (0,0) | (0,0) ] (0,0)
1]o[1]2]3]4]5 (1,1)](0,0) [ (1,1) [ (0,2) | (1,0) [ (0,1) [ (1,2)
202 (4|0(24 (0,2)(0,0) [ (0,2) [ (0,1) | (0,0) [ (0,2) | (0, 1)
310(3[0[3[0]3 (1,0) [ (0,0) | (1,0) [ (0,0) | (1,0) | (0,0) ] (L,0)
Al0]42]0[4]2 (0,1)](0,0) [ (0,1) [ (0,2)](0,0) [ (0,1) [ (0,2)
51054321 (1,2) ] (0,0) [ (1,2) [ (0,1) | (1,0) [ (0,2) | (1,1)

Les éléments x € Z/6Z et leurs images ¢(x) € Z/27 x 7./37 occupent la méme position dans
leurs tableaux respectifs. En examinant ceux-ci de plus prés, on peut vérifier les deux faits
suivants : pour tout z, y € Z/6Z on a

V(@ +y) =) +(y) (o xy) =) < P(y).

Pour résumer, 1 est une bijection qui transforme les opérations arithmétiques de son domaine
de définition en les opérations analogues de son ensemble d’arrivée. On peut donc faire au choix
les opérations voulues sur le tableau de droite, puis les utiliser pour obtenir des résultats sur
celui de gauche, ou bien I'inverse.

L’exemple précédent n’est qu'un cas particulier d'un résultat général. Ce résultat est expli-
cité par le théoréme des restes chinois, dont voici I’énoncé.

Théoréme 4.8. Soient n et m deux entiers strictement supérieurs a 1 et premiers entre eux.
La fonction

N Z/nmZ — Z/nZ x Z/mZL
w ’ X — (fnv'fm)

est bijective ; de plus pour tout (z,y) € (Z/nmZ)* on a les compatibilités

(x+y) =) + ¥ (y) (addition)
Y(x x y) =1(z) x P(y). (multiplication)
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Remarque 10. 11 faut prendre garde au fait que les opérations arithmétiques dans les compati-
bilités ci-dessus ne sont pas définies de la méme facon des deux cotés de I'égalité. A gauche on
a l'opération telle qu’on l'entend dans Z/nmZ, a droite 'opération coordonnée par coordonnée
dans Z/nZ x Z/mZ.

Démonstration. Les compatibilités de ’addition et de la multiplication sont indépendantes du
caractére bijectif de 1. Si 'on prend deux éléments = et y de Z/nmZ, alors par définition

V(e+y) = ((z+y), (+y),) (14)

en utilisant la compatibilité du modulo avec I'addition

V(@ +y) = (Tn+ Yo, T + Yim) (15)
par définition de I'addition dans Z/nZ x Z/mZ

Uz +y) = (Zn, Jm) + (Tn, Yim) (16)
enfin, par définition de

V(@ +y) = () +1P(y) (17)

En appliquant le méme raisonnement a la multiplication, on arrive a

Y(x xy) = () x P(y).

Regardons maintenant les aspects injectif et surjectif. La raison principale pour laquelle v
est a la fois surjective et injective vient du fait que n et m sont premiers entre eux. Ce résultat
peut en fait étre étendu a des contextes beaucoup plus larges.

Injectivité de 1 Supposons qu'il existe deux éléments x et y de Z/nmZ ayant la méme
image par v, i.e. Y¥(z) = ¢¥(y). Ceci équivaut a

Tn = Un[n]

Tm = Um [M]
Ainsi

(z—y), = 0[n

(x=y), = 0[m]

donc n et m divisent tous les deux z — y. LE PPCM de n et m divise alors z — y. Puisque
nAm =1, ce PPCM est nmE] On obtient ainsi = y [nm] qui est le résultat attendu.

Surjectivité de v Le coté surjectif de ¢ peut étre déduit d’'un argument de cardinal : la
fonction 1 est injective et les ensembles de départ et d’arrivée ont le méme cardinal fini, elle
est donc bijective. Mais comme toujours en informatique, il est plus intéressant d’exhiber une
preuve constructive qui donne un moyen d’écrire la fonction réciproque de v : c’est la fonction
¢ qui &y = (y1,y2) € Z/nZ x Z/mZ associe I'élément x € Z/nmZ tel que (x) = y. Par
hypothése, on peut trouver des entiers u et v tels que

un +vm = 1.

17. On le déduit du lemme de Gauss. La décomposition en facteurs premiers des PGCD et PPCM établit
aussi ce résultat.
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En examinant cette relation modulo n puis modulo m, on obtient

vm = 1 [n]
un = 1

L’entier x = y,vm + youn vérifie alors

1 [n]
Y2 [m]

Y1um + Yaun
Y1UM + Yaun

yivm
Youn

ce qui signifie exactement ¢ (x) = y. Ainsi, ¢ est définie par

(Y1, y2) = yrvm + youn [nm]

ol v et u sont les entiers, définis auparavant, qui viennent de la relation de Bézout, y; €
{0,...,n— 1} et yo € {0,...,m — 1}. Pour étre plus précis, il faudrait vérifier quun choix
différent de coefficients de Bézout (v',v’") donnerait toujours la méme fonction ¢. Mais tout
autre couple de coefficients de Bézout est de la forme (u/,v") = (u + km,v — kn) avec k € Z;
I’expression devient alors

yv'm + you'n = yy (v — kn)m + yo(u + km)n (18)
= Y10+ yam + (=yik + yak)mn (19)
= y1v + yom [nm)]. (20)

Un choix différent de coefficients de Bézout définit donc bien la méme fonction réciproque

. O

Exemple 4.10. Regardons un exemple simple pour établir une stratégie de calcul de 'antécé-
dent d’un élément par ¢. Prenons (n, m) = (4,7) et considérons le couple (2,5) € Z/AZ x Z/57Z.
Si l'on suit les étapes du raisonnement précédent, il nous faut d’abord trouver un couple de
coefficients de Bézout associés aux nombres 4 et 7 premiers entre eux. Un calcul rapide permet
d’obtenir
(=5) x4+3x7=1[9
L’élément
hx (=h) x4+2x3xT7=26[28]

a un reste modulo 4 égal & 2 et un reste modulo 7 égal a 5, i.e. ¥(26) = (2,5).

Corollaire 4.9. Etant donné un entier k > 1, soit ma, ..., my, une liste d’entiers strictement
supérieurs a 1 qui sont deux a deux premiers entre eux. On note m le produit de tous les m;.
Alors la fonction
W {Z/mZ — Z/miZ X - X L/ miZ
' r (Zrnys -y Tiny,)

est une bijection compatible avec ’addition et la multiplication coordonnée par coordonnée dans
I’ensemble d’arrivée.

Démonstration. Nous n’allons qu’indiquer les étapes principales de la démonstration dans ce
qui suit, formaliser le tout serait une perte de temps.

La compatibilité avec ’addition et la multiplication deux a deux est tautologique, issue du
fait que I'opération modulo est elle-méme compatible avec les deux. La preuve de la bijectivité

18. Ce sont les coefficients donnés par 'algorithme d’Euclide, qui ne sont pas forcément les plus «simples»
(ici 2 et —1 marchaient aussi).
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est algorithmique ; elle se base sur une utilisation du théoréme des restes chinois par récurrence
pour construire une fonction réciproque.

Si ’on voulait vérifier I'injectivité de la fonction, on se trouverait exactement dans la méme
situation que lors de la preuve de .8l Deux éléments ayant la méme image ont une différence
divisible par mq, ..., my. Puisque ces entiers sont deux & deux premiers entre eux, ladite
différence divise leur produit m. Ainsi les deux nombres sont égaux modulo m. Cela suffit
méme & montrer la bijectivité, encore une fois car les ensembles de départ et d’arrivée ont le
méme cardinal.

Voici comment construire I'image réciproque d'un élément (v, ..., yx) : supposons qu’on a
déja Pantécédent y;..; de (yi,...,y;) pour 1 < j < kin Z/(my ---m;)Z. Alors, I'antécédent de
(yl, e Yi, yj-l—l) dans Z/(m1 s mj+1)Z est

Y1 U1 + yjpao(my - - -my)

ou u et v sont des coefficients de Bézout associés au couple (mjy1,my - - - m;). O

5 Intérét du theoreme des restes chinois

Un bon nombre de questions centrales en arithmétique reviennent a identifier des nombres
premiers et des nombres inversibles. Le but est d’étre capable de factoriser un élément non
inversible donné selon ses comosantes premiéres. La factorisation est un processus cotliteux;
c’est la raison pour laquelle la méthode de chiffrement RSA est relativement stire quand elle
fait intervenir des nombres premiers assez grands. Une autre difficulté est liée au fait que
calculer des puissances d’entiers suffisamment grands a un impact extrémement cotliteux sur
les calculs. De nombreuses méthodes de cryptage standard se basent justement sur I'utilisation
de puissances de grands nombres.

Le théoréme des restes chinois peut aider a séparer en plusieurs sous-problémes plus petits
chacune des difficultés précédentes. C’est quelque chose que l'on peut déja réaliser en ce qui
concerne les puissances d’un entier :

Supposons que 'on travaille avec des entiers plus petits qu'un entier M fixé. Soit la décompo-
sition

M = M1M2 t Mh
ot les M; sont deux & deux premiers entre eux. D’apres le théoréme des restes chinois, on a
alors

ZIMZ ~ T)MZ % - x T/ M7

ol la notation ~ signifie qu’il existe entre les deux ensembles une bijection compatible avec
les opératoins arithmétiques; c’est ce que I'on appelle un tsomorphisme. Si 'on prend des
entiers positifs = et k tels que z* est inférieur & M, alors on peut calculer z* en regardant la
k®me puissance de chaque composante de

(Tary, Tadys - -5 Thay,)

puis en reconstruisant son image réciproque a ’aide du théoréme chinois. Chaque calcul est plus
rapide en utilisant le terme de droite, puisque les facteurs impliqués sont plus petits en premier
lieu, mais aussi puisque, comme ce sont des constantes du systéme, on peut calculer en amont
leurs indicatrices d’Euler et ainsi utiliser des simplifications (& base de divisions euclidiennes)
pour pouvoir calculer les puissances.

Remarque 11. Remarquez que si M est un nombre premier, ou une puissance d’'un nombre
premier, il n’est pas possible d’appliquer une telle stratégie; dans ce cas-la le théoréme des
restes chinois ne donne aucune décomposition et n’est donc d’aucune aide.
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L’approche précédent est ’approche canonique en ce qui concerne 1'utilisation du théoreme
des restes chinois : si I’on veut faire une vérification, un test ou un calcul spécifique dans Z/MZ,
on regarde 'image de notre donnée dans Z/M,Z x ---Z/M,Z, on fait dans cet ensemble les
calculs composante par composante, équivalents mais plus rapides, puis on retransforme les
résultats pour les écrire dans Z/MZ.

5.1 Calculs d’inversibles

Revenons a I'exemple précédent : Z/6Z. Selon le théoréme des restes chinois, nous avons
un isomorphisme entre Z /67 et 7 /27 x 7./37 donné par la fonction dont I'image est composée
des réductions modulo 2 et 3 du nombre de départ.

7/67.  7J27 x 7/3T.

0

B 0 1
2 0(0,0)](0,1)
3 1](1,0) | (1,1)
4 21(2,0)

5

Les éléments inversibles dans Z/6Z sont les éléments grisés. Leurs images dans Z /27 x Z/3Z
sont les cellules grisées correspondant a (1,1) et (2,1). Dans Z/6Z, 1 est sa propre inverse,
ce qui est également le cas pour 5. Si 'on multiplie (1,1) et (2,1) par eux-mémes, on obtient
(1,1) pour le premier et (4,1) = (1,1) pour le second. Ainsi, pour tout élément = parmi les
deux précédents, il existe un élément y tel que zy = (1,1). En un sens, on affirme que les deux
éléments (1,1) et (2,1) sont inversibles dans Z /27 x Z/3Z. Dans ce contexte, I’élément (1, 1)
remplace 1’élément 1 de Z/6Z. On I'appelle élément neutre de Z /27 x Z/3Z car la multiplication
de tout élément de z € Z/27 x 7Z/6Z par (1,1) donne encore z. Une maniére de reformuler
cette remarque serait de dire que les éléments inversibles de Z/67Z correspondent (via notre
bijection) aux éléments inversibles de Z/27Z x 7./37.

L’élément du produit Z/MZ X - - - X 7/ M} Z dont toutes les coordonnées sont égales a 1 est
appelé élément neutre de cet ensemble produit. Le résultat de la multiplication de n’importe
quel élément z par (1,...,1) vaut encore z. Un élément © € Z/MZ X --- X Z/MZ est dit
inversible sl existe un élément y tel que xy = (1,...,1). Ces définitions généralisent celles que
nous avons vues précédemment dans Z/nZ.

Proposition 5.1. Un élément x € Z/MZ est inversible si et seulement si son image ¥ (x) -
par l'isomorphisme donné par le théoréme des restes chinois — est inversible.

Démonstration. Soit x un élément inversible de Z/MZ. Par définition, il existe y € Z/MZ
tel que zy = 1 [M]. En prenant l'image par ¢ des deux membres de I’équation, on obtient

w(ﬂiy) = w(ﬂf)w(y) = (17 KR 1)

ce qui signifie exactement que tout élément inversible z de Z/MZ est envoyé sur un élément

inversible de Z/MZ X -+ x Z/M,Z.

Réciproquement, soit x un élément de Z/M7Z dont 'image v (z) est inversible dans Z/M;Z x
- X Z/MyZ. Par définition, on peut trouver un élément y € Z/M; x --- X Z/M,Z tel que

Y(x)y = (1,...,1). Puisque 9 est un isomorphisme, il existe y € Z/MZ tel que ¥(y) = 7.

Ainsi, on peut écrire

W(1) =(1,...,1) = ¢(x)d(y) = P(ay).

En appliquant ¢! aux deux extrémités de ’égalité précédente, on obtient zy = 1 [M]. O]
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Corollaire 5.2. La fonction induite par v sur (Z/MZ)™ définit une bijection
W (ZIMZ)S — (ZMy % - - x L/ MyZ)*

compatible avec la multiplication. L image par cette fonction est le h-uplet composé des réduc-
tions modulo M; de ’argument, comme c’est le cas pour 1.

Afin de calculer I'inverse d’'un élément = in Z/MZ, on peut :
— calculer I'image (71, ...,7,) de = par la fonction ¢ dans Z/M; X --- x Z/M,Z;
— Trouver 'inverse g; de chaque élément x; dans Z/M;Z s’il y en a une;
— si l'on ne peut pas réaliser ’étape précédente, x n’est pas inversible, sinon on calcule
I'image réciproque y par ¢ de (g1,...,9n);
— Le y obtenu est I'inverse de x.

5.2 Factorisation d’entiers

Avec un peu de travail, on peut adapter la stratégie “diviser pour régner” précédente a la
résolution d’un autre probléme épineux : la factorisation d’entiers inférieurs & M. Commen-
cons par examiner le cas M = 15. Le théoréme des restes chinois établit un isomorphisme v
traduisant le résultat

ZJ157 ~ 7./]37 x Z/5Z.

Si ’on se place dans le membre de gauche, on obtient la décomposition 14 = 2 x 7. En prenant
I'image par ¢ des deux membres de cette égalité, on obtient 1’équation (2,4) = (2,2) x (1,2),
que 'on peut encore écrire

O(14) = (2,4) = (2x 1,2 x 2) = (2,2) x (1,2) = 1(2) x (7).

Cela suggére que factoriser 14 revient a factoriser chaque composante de son image par 1, puis
reconstruire 'image réciproque de chaque facteur par la fonction . Pour que ceci ait du sens,
il faudrait en premier lieu que chaque facteur ait un antécédent par ¢ qui soit plus petit que
I'entier que I'on essaie de factoriser : par exemple, si on prend 12, son image dans Z /37 x Z /57
est (0,2), qui peut se décomposer comme étant le produit de (0,4) et (0, 3). L'image réciproque
de (0,4) est 9 et celle de (0, 3) est 3. Le produit 9 x 3 ne donne 12 que modulo 15, et n’est pas
une factorisation de 12. Remarquez que la décomposition en produit de (0,2) n’est pas unique
et qu’un autre choix aurait pu amener a un résultat différent. Un exemple encore plus fragrant
est celui de l'entier 5. Son image par ¥ est (2,0) que l'on peut écrire comme le produit de
(2,0) et (1,0). Leurs imagess réciproques respectives étant 5 et 10, le produit obtenu vaut bien
encore 5 modulo 15, mais n’est bien évidemment pas une factorisation non triviale de ’entier
5 qui est premier dans Z.

Plutot que de donner une compréhension exhaustive du phénomeéne, examinons-le a travers
la recherche de facteurs par force brute. Considérons que l'on cherche un facteur d’un entier
m inférieur & M. Une méthode naive mais valide consiste & parcourir tous les entiers de 2 &
v/m en testant la divisibilité de m. Une maniére de le faire est de parcourir les entiers k en
partant de 2, en incrémentant jusqu’a ce qu’on trouve un diviseur de m ou que k? > m. Dans
I'ensemble d’arrivée de l'isomorphisme 1), c’est-a-dire Z/MZ X - - - Z/ M, Z, cela est donné par :

1. Soit k =2et k= (kapy, - -, kg, )-

2. Si k a une coordonnée dont le carré est plus grand que la coordonnée correspondante
dans ¥(m), on incrémente k de 1.

3. On teste si k divise 1)(m) composante par composante ;
— si ce n’est pas le cas, on incrémente k de 1 et on recommence ;
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— si cela fonctionne, 'image réciproque k de x est un facteur de m.

Remarque 12. Au cas oil m est inversible et peut étre factorisé par k, alors le quotient de m
par k est mk™1. Si ce n’est pas le cas, le quotient n’est pas unique; c’est par exemple le cas
pour 'exemple précédent 12 =3 x 9 =3 x 4 [15].

6 Cryptage : un ersaiz

Le cryptage est ’action de transformer un message en une suite de caractéres inintelligible
excepté pour le récipiendaire. Cela implique une procédure de chiffrement et une procédure
de déchiffrement. D’une perspective abstraite, si I’on note M l’ensemble de messages et C
I’ensemble des messages cryptés, une méthode de cryptage nécessite deux fonctions ¢: M — C
et 0: C — M telles que 0 o ¢ = idy,. L’expéditeur doit connaitre ¢ et le récipiendaire 9. On
attend d’un bon cryptage qu’il vérifie un certain nombre de propriétés :

— Les calculs d’images par ¢ et 9 doivent étre faciles et rapides;

— Les méthodes ¢ et d doivent étre difficiles & déterminer si ’on ne posséde qu’un sous-

ensemble (ou mieux, tous) des messages cryptés C.

Remarque 13. Comme tout dans un ordinateur n’est que suites de nombres, les ensembles de
messages M et de messages cryptés C seront principalement considérés comme ayant le type
entier. Transformer un message lisible pour un humain en un entier consiste principalement a
encoder les caracteéres.

6.1 Chiffrements symétriques

Le chiffrement symétrique les plus simple est celui connu sous le nom de «code["”]de César».
Il consiste a prendre ’alphabet et décaler toutes les lettres d’une constante donnée, comme sur

la figure

blc|d]|e glh|i|jlk|]l | m|{n|jo|p|lq|r|s|t|lu|lv|w|x|y

=

flg|h|i]]j l{m|{njo|p|lq|r|s|tju|lv|w|x|y|z|a|b|lc|d

FIGURE 1 — Décalage alphabétique de 6 lettres pour le code de César

La fonction de chiffrement ¢ dans ce cas est lue de haut en bas : elle envoie a sur f, bsur g
etc. Pour chiffrer hello on procede alors ainsi :

c(hello) = mjqqt

en appliquant la fonction caractére aprés caractére. Pour déchiffrer un message et retrouver le
message original, il suffit de lire le tableau de bas en haut. La fonction 0 renvoie f sur a, g sur
b etc. La connaissance de 9 ou ¢ dépend donc de deux maniéres de lire le méme tableau. Ainsi,
I'expéditeur et le récipiendaire ont une connaissance équivalente du cryptosystéme utilisé :
il suffit d’avoir ® pour deviner ¢ et vice versa. C’est pourquoi un tel cryptosystéme est dit
symétrique.

Si 'on excepte ce qui concerne I’encodage des caractéres, le principe du code de César peut
étre résumé de la maniére suivante : en se donnant un entier n > 1 modulo lequel nous allons
travailler, déterminer un code de César revient a choisir un entier k£ € 7Z correspondant au
décalage. La fonction ¢ : Z/nZ — 7Z/nZ est la translation ¢(z) = = + k. Sa réciproque est donc
la translation réciproque d(z) = = — k.

19. ou chiffre de César
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Terminologie. Le systéme de chiffrement précédent est entierement déterminé par la donnée
de k. Quand un systéeme de cryptage dépend ainsi d'une donnée numérique, cette donné est
appelée clé.

Question 2. Comment peut-on généraliser le systéme précédent ?

Question 3. Pouvez-vous imaginer un moyen de déchiffrer (on dit casser) un code de
César, pourvu que vous disposiez d’assez de données codées ?

6.2 Chiffrements asymétriques

Un systéme de cryptage asymétrique, au contraire du cas précédent, est un cryptosystéeme
dans lequel I'expéditeur aura autant de difficultés qu'une quelconque tierce partie a connaitre
la méthode de déchiffrement. Cela implique la publication par le récipiendaire de données
publiques permettant & quiconque de lui envoyer un message chiffré, qu’il sera le seul & pouvoir
déchiffrer. Ainsi ¢ est publique et accessible & tous, tandis que le récipiendaire est le seul a
détenir la méthode de déchiffrement 0. L’intérét mais aussi la difficulté est de batir un tel
systéme de maniére a ce que 0 soit dure a déterminer quand on ne dispose que de c.

6.2.1 Chiffrement RSA

Le cryptosystéme RSA est basé sur le fait qu’il est long de décomposer un nombre en
produit de facteurs premiers. Ce constat a été utilisé de la maniére suivante : il est beaucoup
trop cotiteux en temps d’essayer de déterminer un facteur premier d’'un nombre qui est le
produit de deux nombres premiers gigantesques.

Le chiffrement RSA nécessite a la fois des clés publiques et privées. La premiére, accessible
a tous, est nécessaire pour construire la fonction ¢ ; la seconde n’est connue que du récipiendaire
qui publie la clé publique associée.

Pour construire ces deux clés, il faut deux nombres premiers gigantesques (distincts), p et
q, dont le produit pg est noté n; et un élément e inversible dans Z/¢(n)Z, dont I'inverse est
notée d.

‘Clé publique‘ La donnée (n,e).

La donnée d.

Avant de nous pencher sur les méthodes de chiffrement et déchiffrement, prenons le temps
d’expliquer comment on génére de telles clés. Nous avons vu dans la section [5] que le groupe
multiplicatif Z/nZ est de cardinal

p(n) =wP)plq) = (P —-1)(q¢—1).

Afin de trouver un élément inversible e € Z/p(n)Z, il faut donc chercher un élément e qui soit
premier avec (p — 1)(q — 1).
Etant données les clés publiques et privées pour un chiffrement RSA :

| Chiffrement | Pour tout message = € Z/nZ, le message chiffré correspondant est z¢ [n]. La
fonction ¢ est tout simplement la fonction d’expression ¢(x) = x° [n].

‘Déchiffrement\ Pour déchiffrer un message y € Z/nZ, il faut calculer y? [n]. La fonction de
déchiffrement est donnée par ?(y) = y? [n].
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Remarquez que les deux fonctions, de chiffrement et de déchiffrement, consistent a calculer des
puissances d'un entier modulo n. L’exponentiation modulaire est rapide et facile & calculer, ce
qui est un pré-requis pour que le cryptosystéme soit utilisable.

Proposition 6.1. Les données précédentes définissent bien un systéme de cryptage, i.e. Do¢ =
id.

Démonstration. Supposons tout d’abord que 'on a un élément inversible z € (Z/nZ)*. On
veut montrer que pour un tel x

2(c(z)) =0(2°) =2’ =z [n].
Par définition ed = 1 [p(n)]. Cela signifie qu’il existe k € Z tel que
ed + ko(n) = 1.

D’aprés le théoréeme [£.4]
god = 7R = g % (x@(”)>_k =z [n].

Remarquez que si k est positif, on regarde une puissance négative de 1, ce qui doit étre compris
comme étant une puissance de 'inverse de 1 (qui de toute maniére vaut encore 1).
Supposons maintenant que x n’est pas inversible. D’apreés le théoréme des restes chinois :

(Z/nZ)" = (Z/pZ)" x (Z/qZ)" .

Comme les éléments inversibles de Z/pZ et 7./qZ sont tous leurs éléments non nuls, cela signifie
que les éléments non inversibles modulo n correspondent aux couples de la forme (0, z5) avec
xo € Z/qZ ou (x41,0) avec x1 € Z/pZ. Si les deux entrées sont 0 le résultat attendu est évident.
Supposons donc que 7 et xo sont différents de 0. En réutilisant la notation du cas précédent,
on a

(0, 22)% = (0, z) @A@Y = <O,$2 % (xg(Q))*/w(p)) = (0, 23) [1]

qui est le résultat attendu. Le cas symétrique avec x; est analogue. O

6.2.2 Cryptosystéme ElGamal

Le cryptosystéme ElGamal repose sur la difficulté de résoudre des équations du type
a®* = b [n] pour a, b et n fixés, k étant I'inconnue dans 'équation. Ce probléme est ap-
pelé probléme de logarithme discret%] 11 est un peu plus complexe & écrire que le chiffrement
RSA.

Le cryptosystéme ElGamal est défini au coeur d’un environnement consistant en une clé
publique (p, g) :

— p est un nombre premier modulo lequel le probléme logarithmique est difficile a résoudre.

— g est un élément modulo p ayant un ordreP!] suffisamment grand.

De telles données peuvent étre générées par le récipiendaire, ou une tierce partie fiable. Avec de
telles données publiques a disposition, le récipiendaire choisit une clé privée a € Z et calcule et
rend disponible sa clé publique A = g* [p|. Donc, ayant dans ’environnement la donnée (p, g)
publique :

(Presque) n’importe quel entier a choisi (assez grand).

20. Vous étes encouragés & demander a vos enseignants en mathématiques pour quelle raison ce probléme est
lié aux logarihtmes.
21. Tl est recommandé que cet ordre soit un nombre premier.

22 mai 2019 24 B. DUDIN & G. GORON



Epita AFIT

Clé publique | L’entier A = g* modulo p.

Etant donné un nombre premier p pour lequel le probléme logarithmique est suffisamment
difficile, trouver g consiste d’abord a tester si des nombres choisis ont un ordre assez grand.
L’ordre d’un élément g est un diviseur de p — 1. Par exemple, si I’on choisit un nombre premier
de la forme p = 2¢+ 1 ol ¢ est encore premier, alors 'ordre de g sera parmi 1, 2, g et 2¢. Ainsi,
si g% est différent de 1 modulo p, g sera d’ordre g ou 2¢ ce qui peut étre suffisant.

Avec les données publiques et une clé publique ElGamal :

Chiffrement | Pour un message ¢ € Z/pZ, l'expéditeur génére un entier aléatoire k éphé-
mére. Le message chiffré est le couple (¢, ¢p) ott ¢; = ¢* et ¢, = 2A*. La fonction ¢ est

donc définie par 'expression c(x) = (¢g¥, zA¥) ol k est un entier éphémeére.

| Déchiffrement | Pour déchiffrer un message (y1, y2) € Z/pZ, le récipiendaire calcule (y2) " y,.
La fonction 9 est donnée par d(y1,v2) = (v4) yo.

Proposition 6.2. Les données précédentes définissent bien un systéme de cryptage, i.e. doc¢ =
id.

Démonstration. En utilisant les notations précédentes, le but est de prouver
() e = (9") T wAF =2

La premiére égalité n’est rien de moins que la définition. Pour la seconde, par construction :

9= Alpl
ainsi )
(gak) Arz =z [p]
ce qui est le résultat attendu. O
Conclusion

Enfin, voici une citation qui résume tout ce qu’il faut retenir de 'arithmétique :

Cet aprés-midi, en allant a 1’école, j’ai rencontré Alceste qui m’a dit : "Si on n’allait
pas a l’école 7" Moi, je lui ai dit que ce n’était pas bien de ne pas aller a 1’école, que
la maitresse ne serait pas contente, que mon papa m’avait dit qu’il fallait travailler si
on voulait arriver dans la vie et devenir aviateur, que ca ferait de la peine & maman
et que ce n’était pas beau de mentir. Alceste m’a répondu que cet aprés-midi on
avait arithmétique, alors j’ai dit "bon" et nous ne sommes pas allés a 1’école.

Le petit Nicolas, Sempé-Goscinny

22. On ne s’en servira qu’une seule fois!
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