AFIT/Source/scalable/scalable_test_primes.ml

42 lines
1.2 KiB
OCaml

(** Testing for primality *)
open Scalable
open Scalable_basic_arithmetics
open Scalable_power
(** Deterministic primality test *)
let is_prime n =
if n = [0;0;1] || n = [0;1;1] then
true
else
if mod_b n [0;0;1] = [] || mod_b n [0;1;1] = [] then
false
else
let rec is_prime_rec k =
let test_inf = diff_b (mult_b [0;0;1;1] k) [0;1] in
let test_sup = add_n test_inf [0;0;1] in
if (>>) (mult_b test_inf test_inf) n then
true
else
match (test_inf, test_sup) with
(a, b) when mod_b n a = [] || mod_b n b = [] -> false
| _ -> is_prime_rec (add_n k [0;1])
in is_prime_rec [0;1];;
(** Pseudo-primality test based on Fermat's Little Theorem
@param p tested bitarray
@param testSeq sequence of bitarrays againt which to test
*)
let is_pseudo_prime p test_seq =
let rec is_pseudo_prime_rec l =
match l with
[] -> true
| e::l1 when mod_power e (diff_b p [0;1]) p <> [0;1] -> begin
if gcd_b e p = [0;1] then
false
else
is_pseudo_prime_rec l1
end
| _::l1 -> is_pseudo_prime_rec l1
in is_pseudo_prime_rec test_seq;;