xf86-video-intel/src/i830_modes.c

778 lines
24 KiB
C

#define DEBUG_VERB 2
/*
* Copyright © 2002 David Dawes
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of the author(s) shall
* not be used in advertising or otherwise to promote the sale, use or other
* dealings in this Software without prior written authorization from
* the author(s).
*
* Authors: David Dawes <dawes@xfree86.org>
*
* $XFree86: xc/programs/Xserver/hw/xfree86/os-support/vbe/vbeModes.c,v 1.6 2002/11/02 01:38:25 dawes Exp $
*/
/*
* Modified by Alan Hourihane <alanh@tungstengraphics.com>
* to support extended BIOS modes for the Intel chipsets
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <string.h>
#include "xf86.h"
#include "vbe.h"
#include "vbeModes.h"
#include "i830.h"
#include <math.h>
#define rint(x) floor(x)
#define MARGIN_PERCENT 1.8 /* % of active vertical image */
#define CELL_GRAN 8.0 /* assumed character cell granularity */
#define MIN_PORCH 1 /* minimum front porch */
#define V_SYNC_RQD 3 /* width of vsync in lines */
#define H_SYNC_PERCENT 8.0 /* width of hsync as % of total line */
#define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */
#define M 600.0 /* blanking formula gradient */
#define C 40.0 /* blanking formula offset */
#define K 128.0 /* blanking formula scaling factor */
#define J 20.0 /* blanking formula scaling factor */
/* C' and M' are part of the Blanking Duty Cycle computation */
#define C_PRIME (((C - J) * K/256.0) + J)
#define M_PRIME (K/256.0 * M)
extern const int i830refreshes[];
static DisplayModePtr
I830GetGTF (int h_pixels, int v_lines, float freq,
int interlaced, int margins)
{
float h_pixels_rnd;
float v_lines_rnd;
float v_field_rate_rqd;
float top_margin;
float bottom_margin;
float interlace;
float h_period_est;
float vsync_plus_bp;
float v_back_porch;
float total_v_lines;
float v_field_rate_est;
float h_period;
float v_field_rate;
float v_frame_rate;
float left_margin;
float right_margin;
float total_active_pixels;
float ideal_duty_cycle;
float h_blank;
float total_pixels;
float pixel_freq;
float h_freq;
float h_sync;
float h_front_porch;
float v_odd_front_porch_lines;
char modename[20];
DisplayModePtr m;
m = xnfcalloc(sizeof(DisplayModeRec), 1);
/* 1. In order to give correct results, the number of horizontal
* pixels requested is first processed to ensure that it is divisible
* by the character size, by rounding it to the nearest character
* cell boundary:
*
* [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
*/
h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN;
/* 2. If interlace is requested, the number of vertical lines assumed
* by the calculation must be halved, as the computation calculates
* the number of vertical lines per field. In either case, the
* number of lines is rounded to the nearest integer.
*
* [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
* ROUND([V LINES],0))
*/
v_lines_rnd = interlaced ?
rint((float) v_lines) / 2.0 :
rint((float) v_lines);
/* 3. Find the frame rate required:
*
* [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
* [I/P FREQ RQD])
*/
v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq);
/* 4. Find number of lines in Top margin:
*
* [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
* ROUND(([MARGIN%]/100*[V LINES RND]),0),
* 0)
*/
top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
/* 5. Find number of lines in Bottom margin:
*
* [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
* ROUND(([MARGIN%]/100*[V LINES RND]),0),
* 0)
*/
bottom_margin = margins ? rint(MARGIN_PERCENT/100.0 * v_lines_rnd) : (0.0);
/* 6. If interlace is required, then set variable [INTERLACE]=0.5:
*
* [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
*/
interlace = interlaced ? 0.5 : 0.0;
/* 7. Estimate the Horizontal period
*
* [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
* ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
* [MIN PORCH RND]+[INTERLACE]) * 1000000
*/
h_period_est = (((1.0/v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP/1000000.0))
/ (v_lines_rnd + (2*top_margin) + MIN_PORCH + interlace)
* 1000000.0);
/* 8. Find the number of lines in V sync + back porch:
*
* [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
*/
vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP/h_period_est);
/* 9. Find the number of lines in V back porch alone:
*
* [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
*
* XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
*/
v_back_porch = vsync_plus_bp - V_SYNC_RQD;
/* 10. Find the total number of lines in Vertical field period:
*
* [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
* [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
* [MIN PORCH RND]
*/
total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp +
interlace + MIN_PORCH;
/* 11. Estimate the Vertical field frequency:
*
* [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
*/
v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0;
/* 12. Find the actual horizontal period:
*
* [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
*/
h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est);
/* 13. Find the actual Vertical field frequency:
*
* [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
*/
v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0;
/* 14. Find the Vertical frame frequency:
*
* [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
*/
v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate;
/* 15. Find number of pixels in left margin:
*
* [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
* (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
* [CELL GRAN RND]),0)) * [CELL GRAN RND],
* 0))
*/
left_margin = margins ?
rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
0.0;
/* 16. Find number of pixels in right margin:
*
* [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
* (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
* [CELL GRAN RND]),0)) * [CELL GRAN RND],
* 0))
*/
right_margin = margins ?
rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
0.0;
/* 17. Find total number of active pixels in image and left and right
* margins:
*
* [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
* [RIGHT MARGIN (PIXELS)]
*/
total_active_pixels = h_pixels_rnd + left_margin + right_margin;
/* 18. Find the ideal blanking duty cycle from the blanking duty cycle
* equation:
*
* [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
*/
ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0);
/* 19. Find the number of pixels in the blanking time to the nearest
* double character cell:
*
* [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
* [IDEAL DUTY CYCLE] /
* (100-[IDEAL DUTY CYCLE]) /
* (2*[CELL GRAN RND])), 0))
* * (2*[CELL GRAN RND])
*/
h_blank = rint(total_active_pixels *
ideal_duty_cycle /
(100.0 - ideal_duty_cycle) /
(2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN);
/* 20. Find total number of pixels:
*
* [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
*/
total_pixels = total_active_pixels + h_blank;
/* 21. Find pixel clock frequency:
*
* [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
*/
pixel_freq = total_pixels / h_period;
/* 22. Find horizontal frequency:
*
* [H FREQ] = 1000 / [H PERIOD]
*/
h_freq = 1000.0 / h_period;
/* Stage 1 computations are now complete; I should really pass
the results to another function and do the Stage 2
computations, but I only need a few more values so I'll just
append the computations here for now */
/* 17. Find the number of pixels in the horizontal sync period:
*
* [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
* [CELL GRAN RND]),0))*[CELL GRAN RND]
*/
h_sync = rint(H_SYNC_PERCENT/100.0 * total_pixels / CELL_GRAN) * CELL_GRAN;
/* 18. Find the number of pixels in the horizontal front porch period:
*
* [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
*/
h_front_porch = (h_blank / 2.0) - h_sync;
/* 36. Find the number of lines in the odd front porch period:
*
* [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
*/
v_odd_front_porch_lines = MIN_PORCH + interlace;
/* finally, pack the results in the DisplayMode struct */
m->HDisplay = (int) (h_pixels_rnd);
m->HSyncStart = (int) (h_pixels_rnd + h_front_porch);
m->HSyncEnd = (int) (h_pixels_rnd + h_front_porch + h_sync);
m->HTotal = (int) (total_pixels);
m->VDisplay = (int) (v_lines_rnd);
m->VSyncStart = (int) (v_lines_rnd + v_odd_front_porch_lines);
m->VSyncEnd = (int) (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD);
m->VTotal = (int) (total_v_lines);
m->Clock = (int)(pixel_freq * 1000);
m->SynthClock = m->Clock;
m->HSync = h_freq;
m->VRefresh = v_frame_rate /* freq */;
snprintf(modename, sizeof(modename), "%dx%d", m->HDisplay,m->VDisplay);
m->name = xnfstrdup(modename);
return (m);
}
static DisplayModePtr
CheckMode(ScrnInfoPtr pScrn, vbeInfoPtr pVbe, VbeInfoBlock *vbe, int id,
int flags)
{
CARD16 major, minor;
VbeModeInfoBlock *mode;
DisplayModePtr p = NULL, pMode = NULL;
VbeModeInfoData *data;
Bool modeOK = FALSE;
ModeStatus status = MODE_OK;
major = (unsigned)(vbe->VESAVersion >> 8);
minor = vbe->VESAVersion & 0xff;
if ((mode = VBEGetModeInfo(pVbe, id)) == NULL)
return NULL;
/* Does the mode match the depth/bpp? */
/* Some BIOS's set BitsPerPixel to 15 instead of 16 for 15/16 */
if (VBE_MODE_USABLE(mode, flags) &&
((pScrn->bitsPerPixel == 1 && !VBE_MODE_COLOR(mode)) ||
(mode->BitsPerPixel > 8 &&
(mode->RedMaskSize + mode->GreenMaskSize +
mode->BlueMaskSize) == pScrn->depth &&
mode->BitsPerPixel == pScrn->bitsPerPixel) ||
(mode->BitsPerPixel == 15 && pScrn->depth == 15) ||
(mode->BitsPerPixel <= 8 &&
mode->BitsPerPixel == pScrn->bitsPerPixel))) {
modeOK = TRUE;
xf86ErrorFVerb(DEBUG_VERB, "*");
}
if (mode->XResolution && mode->YResolution &&
!I830CheckModeSupport(pScrn, mode->XResolution, mode->YResolution, id))
modeOK = FALSE;
/*
* Check if there's a valid monitor mode that this one can be matched
* up with from the 'specified' modes list.
*/
if (modeOK) {
for (p = pScrn->monitor->Modes; p != NULL; p = p->next) {
if ((p->type != 0) ||
(p->HDisplay != mode->XResolution) ||
(p->VDisplay != mode->YResolution) ||
(p->Flags & (V_INTERLACE | V_DBLSCAN | V_CLKDIV2)))
continue;
status = xf86CheckModeForMonitor(p, pScrn->monitor);
if (status == MODE_OK) {
modeOK = TRUE;
break;
}
}
if (p) {
pMode = xnfcalloc(sizeof(DisplayModeRec), 1);
memcpy((char*)pMode,(char*)p,sizeof(DisplayModeRec));
pMode->name = xnfstrdup(p->name);
}
}
/*
* Now, check if there's a valid monitor mode that this one can be matched
* up with from the default modes list. i.e. VESA modes in xf86DefModes.c
*/
if (modeOK && !pMode) {
int refresh = 0, calcrefresh = 0;
DisplayModePtr newMode = NULL;
for (p = pScrn->monitor->Modes; p != NULL; p = p->next) {
calcrefresh = (int)(((double)(p->Clock * 1000) /
(double)(p->HTotal * p->VTotal)) * 100);
if ((p->type != M_T_DEFAULT) ||
(p->HDisplay != mode->XResolution) ||
(p->VDisplay != mode->YResolution) ||
(p->Flags & (V_INTERLACE | V_DBLSCAN | V_CLKDIV2)))
continue;
status = xf86CheckModeForMonitor(p, pScrn->monitor);
if (status == MODE_OK) {
if (calcrefresh > refresh) {
refresh = calcrefresh;
newMode = p;
}
modeOK = TRUE;
}
}
if (newMode) {
pMode = xnfcalloc(sizeof(DisplayModeRec), 1);
memcpy((char*)pMode,(char*)newMode,sizeof(DisplayModeRec));
pMode->name = xnfstrdup(newMode->name);
}
}
/*
* Check if there's a valid monitor mode that this one can be matched
* up with. The actual matching is done later.
*/
if (modeOK && !pMode) {
float vrefresh = 0.0f;
int i;
for (i=0;i<pScrn->monitor->nVrefresh;i++) {
for (vrefresh = pScrn->monitor->vrefresh[i].hi;
vrefresh >= pScrn->monitor->vrefresh[i].lo; vrefresh -= 1.0f) {
if (vrefresh != (float)0.0f) {
float best_vrefresh;
int int_vrefresh;
/* Find the best refresh for the Intel chipsets */
int_vrefresh = I830GetBestRefresh(pScrn, (int)vrefresh);
best_vrefresh = (float)i830refreshes[int_vrefresh];
/* Now, grab the best mode from the available refresh */
pMode = I830GetGTF(mode->XResolution, mode->YResolution,
best_vrefresh, 0, 0);
pMode->type = M_T_BUILTIN;
status = xf86CheckModeForMonitor(pMode, pScrn->monitor);
if (status == MODE_OK) {
if (major >= 3) {
if (pMode->Clock * 1000 <= mode->MaxPixelClock)
modeOK = TRUE;
else
modeOK = FALSE;
} else
modeOK = TRUE;
} else
modeOK = FALSE;
pMode->status = status;
} else {
modeOK = FALSE;
}
if (modeOK) break;
}
if (modeOK) break;
}
}
xf86ErrorFVerb(DEBUG_VERB,
"Mode: %x (%dx%d)\n", id, mode->XResolution, mode->YResolution);
xf86ErrorFVerb(DEBUG_VERB,
" ModeAttributes: 0x%x\n", mode->ModeAttributes);
xf86ErrorFVerb(DEBUG_VERB,
" WinAAttributes: 0x%x\n", mode->WinAAttributes);
xf86ErrorFVerb(DEBUG_VERB,
" WinBAttributes: 0x%x\n", mode->WinBAttributes);
xf86ErrorFVerb(DEBUG_VERB,
" WinGranularity: %d\n", mode->WinGranularity);
xf86ErrorFVerb(DEBUG_VERB,
" WinSize: %d\n", mode->WinSize);
xf86ErrorFVerb(DEBUG_VERB,
" WinASegment: 0x%x\n", mode->WinASegment);
xf86ErrorFVerb(DEBUG_VERB,
" WinBSegment: 0x%x\n", mode->WinBSegment);
xf86ErrorFVerb(DEBUG_VERB,
" WinFuncPtr: 0x%lx\n", (unsigned long)mode->WinFuncPtr);
xf86ErrorFVerb(DEBUG_VERB,
" BytesPerScanline: %d\n", mode->BytesPerScanline);
xf86ErrorFVerb(DEBUG_VERB,
" XResolution: %d\n", mode->XResolution);
xf86ErrorFVerb(DEBUG_VERB,
" YResolution: %d\n", mode->YResolution);
xf86ErrorFVerb(DEBUG_VERB,
" XCharSize: %d\n", mode->XCharSize);
xf86ErrorFVerb(DEBUG_VERB,
" YCharSize: %d\n", mode->YCharSize);
xf86ErrorFVerb(DEBUG_VERB,
" NumberOfPlanes: %d\n", mode->NumberOfPlanes);
xf86ErrorFVerb(DEBUG_VERB,
" BitsPerPixel: %d\n", mode->BitsPerPixel);
xf86ErrorFVerb(DEBUG_VERB,
" NumberOfBanks: %d\n", mode->NumberOfBanks);
xf86ErrorFVerb(DEBUG_VERB,
" MemoryModel: %d\n", mode->MemoryModel);
xf86ErrorFVerb(DEBUG_VERB,
" BankSize: %d\n", mode->BankSize);
xf86ErrorFVerb(DEBUG_VERB,
" NumberOfImages: %d\n", mode->NumberOfImages);
xf86ErrorFVerb(DEBUG_VERB,
" RedMaskSize: %d\n", mode->RedMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" RedFieldPosition: %d\n", mode->RedFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" GreenMaskSize: %d\n", mode->GreenMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" GreenFieldPosition: %d\n", mode->GreenFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" BlueMaskSize: %d\n", mode->BlueMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" BlueFieldPosition: %d\n", mode->BlueFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" RsvdMaskSize: %d\n", mode->RsvdMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" RsvdFieldPosition: %d\n", mode->RsvdFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" DirectColorModeInfo: %d\n", mode->DirectColorModeInfo);
if (major >= 2) {
xf86ErrorFVerb(DEBUG_VERB,
" PhysBasePtr: 0x%lx\n",
(unsigned long)mode->PhysBasePtr);
if (major >= 3) {
xf86ErrorFVerb(DEBUG_VERB,
" LinBytesPerScanLine: %d\n", mode->LinBytesPerScanLine);
xf86ErrorFVerb(DEBUG_VERB,
" BnkNumberOfImagePages: %d\n", mode->BnkNumberOfImagePages);
xf86ErrorFVerb(DEBUG_VERB,
" LinNumberOfImagePages: %d\n", mode->LinNumberOfImagePages);
xf86ErrorFVerb(DEBUG_VERB,
" LinRedMaskSize: %d\n", mode->LinRedMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" LinRedFieldPosition: %d\n", mode->LinRedFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" LinGreenMaskSize: %d\n", mode->LinGreenMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" LinGreenFieldPosition: %d\n", mode->LinGreenFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" LinBlueMaskSize: %d\n", mode->LinBlueMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" LinBlueFieldPosition: %d\n", mode->LinBlueFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" LinRsvdMaskSize: %d\n", mode->LinRsvdMaskSize);
xf86ErrorFVerb(DEBUG_VERB,
" LinRsvdFieldPosition: %d\n", mode->LinRsvdFieldPosition);
xf86ErrorFVerb(DEBUG_VERB,
" MaxPixelClock: %ld\n", (unsigned long)
mode->MaxPixelClock);
}
}
if (!modeOK) {
VBEFreeModeInfo(mode);
if (pMode)
xfree(pMode);
return NULL;
}
pMode->status = MODE_OK;
pMode->type = M_T_BUILTIN;
/* for adjust frame */
pMode->HDisplay = mode->XResolution;
pMode->VDisplay = mode->YResolution;
data = xnfcalloc(sizeof(VbeModeInfoData), 1);
data->mode = id;
data->data = mode;
pMode->PrivSize = sizeof(VbeModeInfoData);
pMode->Private = (INT32*)data;
pMode->next = NULL;
return pMode;
}
/*
* Check the available BIOS modes, and extract those that match the
* requirements into the modePool. Note: modePool is a NULL-terminated
* list.
*/
DisplayModePtr
I830GetModePool(ScrnInfoPtr pScrn, vbeInfoPtr pVbe, VbeInfoBlock *vbe)
{
DisplayModePtr pMode, p = NULL, modePool = NULL;
int i = 0;
for (i = 0; i < 0x7F; i++) {
if ((pMode = CheckMode(pScrn, pVbe, vbe, i, V_MODETYPE_VGA)) != NULL) {
ModeStatus status = MODE_OK;
/* Check the mode against a specified virtual size (if any) */
if (pScrn->display->virtualX > 0 &&
pMode->HDisplay > pScrn->display->virtualX) {
status = MODE_VIRTUAL_X;
}
if (pScrn->display->virtualY > 0 &&
pMode->VDisplay > pScrn->display->virtualY) {
status = MODE_VIRTUAL_Y;
}
if (status != MODE_OK) {
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Not using mode \"%dx%d\" (%s)\n",
pMode->HDisplay, pMode->VDisplay,
xf86ModeStatusToString(status));
} else {
if (p == NULL) {
modePool = pMode;
} else {
p->next = pMode;
}
pMode->prev = NULL;
p = pMode;
}
}
}
return modePool;
}
/*
* Go through the monitor modes and selecting the best set of
* parameters for each BIOS mode. Note: This is only supported in
* VBE version 3.0 or later.
*/
void
I830SetModeParameters(ScrnInfoPtr pScrn, vbeInfoPtr pVbe)
{
DisplayModePtr pMode;
VbeModeInfoData *data;
pMode = pScrn->modes;
do {
int clock;
data = (VbeModeInfoData*)pMode->Private;
data->block = xcalloc(sizeof(VbeCRTCInfoBlock), 1);
data->block->HorizontalTotal = pMode->HTotal;
data->block->HorizontalSyncStart = pMode->HSyncStart;
data->block->HorizontalSyncEnd = pMode->HSyncEnd;
data->block->VerticalTotal = pMode->VTotal;
data->block->VerticalSyncStart = pMode->VSyncStart;
data->block->VerticalSyncEnd = pMode->VSyncEnd;
data->block->Flags = ((pMode->Flags & V_NHSYNC) ? CRTC_NHSYNC : 0) |
((pMode->Flags & V_NVSYNC) ? CRTC_NVSYNC : 0);
data->block->PixelClock = pMode->Clock * 1000;
/* XXX May not have this. */
clock = VBEGetPixelClock(pVbe, data->mode, data->block->PixelClock);
if (clock)
data->block->PixelClock = clock;
#ifdef DEBUG
ErrorF("Setting clock %.2fMHz, closest is %.2fMHz\n",
(double)data->block->PixelClock / 1000000.0,
(double)clock / 1000000.0);
#endif
data->mode |= (1 << 11);
if (pMode->VRefresh != 0) {
data->block->RefreshRate = pMode->VRefresh * 100;
} else {
data->block->RefreshRate = (int)(((double)(data->block->PixelClock)/
(double)(pMode->HTotal * pMode->VTotal)) * 100);
}
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Attempting to use %2.2fHz refresh for mode \"%s\" (%x)\n",
(float)(((double)(data->block->PixelClock) / (double)(pMode->HTotal * pMode->VTotal))), pMode->name, data->mode);
#ifdef DEBUG
ErrorF("Video Modeline: ID: 0x%x Name: %s %i %i %i %i - "
" %i %i %i %i %.2f MHz Refresh: %.2f Hz\n",
data->mode, pMode->name, pMode->HDisplay, pMode->HSyncStart,
pMode->HSyncEnd, pMode->HTotal, pMode->VDisplay,
pMode->VSyncStart,pMode->VSyncEnd,pMode->VTotal,
(double)data->block->PixelClock/1000000.0,
(double)data->block->RefreshRate/100);
#endif
pMode = pMode->next;
} while (pMode != pScrn->modes);
}
void
I830PrintModes(ScrnInfoPtr scrp)
{
DisplayModePtr p;
float hsync, refresh = 0;
char *desc, *desc2, *prefix, *uprefix;
if (scrp == NULL)
return;
xf86DrvMsg(scrp->scrnIndex, scrp->virtualFrom, "Virtual size is %dx%d "
"(pitch %d)\n", scrp->virtualX, scrp->virtualY,
scrp->displayWidth);
p = scrp->modes;
if (p == NULL)
return;
do {
desc = desc2 = "";
if (p->HSync > 0.0)
hsync = p->HSync;
else if (p->HTotal > 0)
hsync = (float)p->Clock / (float)p->HTotal;
else
hsync = 0.0;
if (p->VTotal > 0)
refresh = hsync * 1000.0 / p->VTotal;
if (p->Flags & V_INTERLACE) {
refresh *= 2.0;
desc = " (I)";
}
if (p->Flags & V_DBLSCAN) {
refresh /= 2.0;
desc = " (D)";
}
if (p->VScan > 1) {
refresh /= p->VScan;
desc2 = " (VScan)";
}
if (p->VRefresh > 0.0)
refresh = p->VRefresh;
if (p->type & M_T_BUILTIN)
prefix = "Built-in mode";
else if (p->type & M_T_DEFAULT)
prefix = "Default mode";
else
prefix = "Mode";
if (p->type & M_T_USERDEF)
uprefix = "*";
else
uprefix = " ";
if (p->name)
xf86DrvMsg(scrp->scrnIndex, X_CONFIG,
"%s%s \"%s\"\n", uprefix, prefix, p->name);
else
xf86DrvMsg(scrp->scrnIndex, X_PROBED,
"%s%s %dx%d (unnamed)\n",
uprefix, prefix, p->HDisplay, p->VDisplay);
p = p->next;
} while (p != NULL && p != scrp->modes);
}