xf86-video-intel/src/sna/gen3_render.c

3719 lines
99 KiB
C

/*
* Copyright © 2010-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sna.h"
#include "sna_render.h"
#include "sna_render_inline.h"
#include "sna_reg.h"
#include "sna_video.h"
#include "gen3_render.h"
#if DEBUG_RENDER
#undef DBG
#define DBG(x) ErrorF x
#else
#define NDEBUG 1
#endif
#define NO_COMPOSITE 0
#define NO_COMPOSITE_SPANS 0
#define NO_COPY 0
#define NO_COPY_BOXES 0
#define NO_FILL 0
#define NO_FILL_BOXES 0
enum {
SHADER_NONE = 0,
SHADER_ZERO,
SHADER_CONSTANT,
SHADER_LINEAR,
SHADER_RADIAL,
SHADER_TEXTURE,
SHADER_OPACITY,
};
#define OUT_BATCH(v) batch_emit(sna, v)
#define OUT_BATCH_F(v) batch_emit_float(sna, v)
#define OUT_VERTEX(v) vertex_emit(sna, v)
enum gen3_radial_mode {
RADIAL_ONE,
RADIAL_TWO
};
static const struct blendinfo {
Bool dst_alpha;
Bool src_alpha;
uint32_t src_blend;
uint32_t dst_blend;
} gen3_blend_op[] = {
/* Clear */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ZERO},
/* Src */ {0, 0, BLENDFACT_ONE, BLENDFACT_ZERO},
/* Dst */ {0, 0, BLENDFACT_ZERO, BLENDFACT_ONE},
/* Over */ {0, 1, BLENDFACT_ONE, BLENDFACT_INV_SRC_ALPHA},
/* OverReverse */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ONE},
/* In */ {1, 0, BLENDFACT_DST_ALPHA, BLENDFACT_ZERO},
/* InReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_SRC_ALPHA},
/* Out */ {1, 0, BLENDFACT_INV_DST_ALPHA, BLENDFACT_ZERO},
/* OutReverse */ {0, 1, BLENDFACT_ZERO, BLENDFACT_INV_SRC_ALPHA},
/* Atop */ {1, 1, BLENDFACT_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA},
/* AtopReverse */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_SRC_ALPHA},
/* Xor */ {1, 1, BLENDFACT_INV_DST_ALPHA, BLENDFACT_INV_SRC_ALPHA},
/* Add */ {0, 0, BLENDFACT_ONE, BLENDFACT_ONE},
};
static const struct formatinfo {
int fmt, xfmt;
uint32_t card_fmt;
Bool rb_reversed;
} gen3_tex_formats[] = {
{PICT_a8, 0, MAPSURF_8BIT | MT_8BIT_A8, FALSE},
{PICT_a8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_ARGB8888, FALSE},
{PICT_x8r8g8b8, 0, MAPSURF_32BIT | MT_32BIT_XRGB8888, FALSE},
{PICT_a8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_ABGR8888, FALSE},
{PICT_x8b8g8r8, 0, MAPSURF_32BIT | MT_32BIT_XBGR8888, FALSE},
{PICT_a2r10g10b10, PICT_x2r10g10b10, MAPSURF_32BIT | MT_32BIT_ARGB2101010, FALSE},
{PICT_a2b10g10r10, PICT_x2b10g10r10, MAPSURF_32BIT | MT_32BIT_ABGR2101010, FALSE},
{PICT_r5g6b5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, FALSE},
{PICT_b5g6r5, 0, MAPSURF_16BIT | MT_16BIT_RGB565, TRUE},
{PICT_a1r5g5b5, PICT_x1r5g5b5, MAPSURF_16BIT | MT_16BIT_ARGB1555, FALSE},
{PICT_a1b5g5r5, PICT_x1b5g5r5, MAPSURF_16BIT | MT_16BIT_ARGB1555, TRUE},
{PICT_a4r4g4b4, PICT_x4r4g4b4, MAPSURF_16BIT | MT_16BIT_ARGB4444, FALSE},
{PICT_a4b4g4r4, PICT_x4b4g4r4, MAPSURF_16BIT | MT_16BIT_ARGB4444, TRUE},
};
#define xFixedToDouble(f) pixman_fixed_to_double(f)
static inline uint32_t gen3_buf_tiling(uint32_t tiling)
{
uint32_t v = 0;
switch (tiling) {
case I915_TILING_Y: v |= BUF_3D_TILE_WALK_Y;
case I915_TILING_X: v |= BUF_3D_TILED_SURFACE;
case I915_TILING_NONE: break;
}
return v;
}
static inline Bool
gen3_check_pitch_3d(struct kgem_bo *bo)
{
return bo->pitch <= 8192;
}
static uint32_t gen3_get_blend_cntl(int op,
Bool has_component_alpha,
uint32_t dst_format)
{
uint32_t sblend = gen3_blend_op[op].src_blend;
uint32_t dblend = gen3_blend_op[op].dst_blend;
/* If there's no dst alpha channel, adjust the blend op so that we'll
* treat it as always 1.
*/
if (gen3_blend_op[op].dst_alpha) {
if (PICT_FORMAT_A(dst_format) == 0) {
if (sblend == BLENDFACT_DST_ALPHA)
sblend = BLENDFACT_ONE;
else if (sblend == BLENDFACT_INV_DST_ALPHA)
sblend = BLENDFACT_ZERO;
}
/* gen3 engine reads 8bit color buffer into green channel
* in cases like color buffer blending etc., and also writes
* back green channel. So with dst_alpha blend we should use
* color factor. See spec on "8-bit rendering".
*/
if (dst_format == PICT_a8) {
if (sblend == BLENDFACT_DST_ALPHA)
sblend = BLENDFACT_DST_COLR;
else if (sblend == BLENDFACT_INV_DST_ALPHA)
sblend = BLENDFACT_INV_DST_COLR;
}
}
/* If the source alpha is being used, then we should only be in a case
* where the source blend factor is 0, and the source blend value is the
* mask channels multiplied by the source picture's alpha.
*/
if (has_component_alpha && gen3_blend_op[op].src_alpha) {
if (dblend == BLENDFACT_SRC_ALPHA)
dblend = BLENDFACT_SRC_COLR;
else if (dblend == BLENDFACT_INV_SRC_ALPHA)
dblend = BLENDFACT_INV_SRC_COLR;
}
return (S6_CBUF_BLEND_ENABLE | S6_COLOR_WRITE_ENABLE |
BLENDFUNC_ADD << S6_CBUF_BLEND_FUNC_SHIFT |
sblend << S6_CBUF_SRC_BLEND_FACT_SHIFT |
dblend << S6_CBUF_DST_BLEND_FACT_SHIFT);
}
static Bool gen3_check_dst_format(uint32_t format)
{
switch (format) {
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
case PICT_a8b8g8r8:
case PICT_x8b8g8r8:
case PICT_r5g6b5:
case PICT_b5g6r5:
case PICT_a1r5g5b5:
case PICT_x1r5g5b5:
case PICT_a1b5g5r5:
case PICT_x1b5g5r5:
case PICT_a2r10g10b10:
case PICT_x2r10g10b10:
case PICT_a2b10g10r10:
case PICT_x2b10g10r10:
case PICT_a8:
case PICT_a4r4g4b4:
case PICT_x4r4g4b4:
case PICT_a4b4g4r4:
case PICT_x4b4g4r4:
return TRUE;
default:
return FALSE;
}
}
static Bool gen3_dst_rb_reversed(uint32_t format)
{
switch (format) {
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
case PICT_r5g6b5:
case PICT_a1r5g5b5:
case PICT_x1r5g5b5:
case PICT_a2r10g10b10:
case PICT_x2r10g10b10:
case PICT_a8:
case PICT_a4r4g4b4:
case PICT_x4r4g4b4:
return FALSE;
default:
return TRUE;
}
}
#define DSTORG_HORT_BIAS(x) ((x)<<20)
#define DSTORG_VERT_BIAS(x) ((x)<<16)
static uint32_t gen3_get_dst_format(uint32_t format)
{
#define BIAS (DSTORG_HORT_BIAS(0x8) | DSTORG_VERT_BIAS(0x8))
switch (format) {
default:
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
case PICT_a8b8g8r8:
case PICT_x8b8g8r8:
return BIAS | COLR_BUF_ARGB8888;
case PICT_r5g6b5:
case PICT_b5g6r5:
return BIAS | COLR_BUF_RGB565;
case PICT_a1r5g5b5:
case PICT_x1r5g5b5:
case PICT_a1b5g5r5:
case PICT_x1b5g5r5:
return BIAS | COLR_BUF_ARGB1555;
case PICT_a2r10g10b10:
case PICT_x2r10g10b10:
case PICT_a2b10g10r10:
case PICT_x2b10g10r10:
return BIAS | COLR_BUF_ARGB2AAA;
case PICT_a8:
return BIAS | COLR_BUF_8BIT;
case PICT_a4r4g4b4:
case PICT_x4r4g4b4:
case PICT_a4b4g4r4:
case PICT_x4b4g4r4:
return BIAS | COLR_BUF_ARGB4444;
}
#undef BIAS
}
static uint32_t gen3_texture_repeat(uint32_t repeat)
{
#define REPEAT(x) \
(SS3_NORMALIZED_COORDS | \
TEXCOORDMODE_##x << SS3_TCX_ADDR_MODE_SHIFT | \
TEXCOORDMODE_##x << SS3_TCY_ADDR_MODE_SHIFT)
switch (repeat) {
default:
case RepeatNone:
return REPEAT(CLAMP_BORDER);
case RepeatNormal:
return REPEAT(WRAP);
case RepeatPad:
return REPEAT(CLAMP_EDGE);
case RepeatReflect:
return REPEAT(MIRROR);
}
#undef REPEAT
}
static uint32_t gen3_gradient_repeat(uint32_t repeat)
{
#define REPEAT(x) \
(SS3_NORMALIZED_COORDS | \
TEXCOORDMODE_##x << SS3_TCX_ADDR_MODE_SHIFT | \
TEXCOORDMODE_WRAP << SS3_TCY_ADDR_MODE_SHIFT)
switch (repeat) {
default:
case RepeatNone:
return REPEAT(CLAMP_BORDER);
case RepeatNormal:
return REPEAT(WRAP);
case RepeatPad:
return REPEAT(CLAMP_EDGE);
case RepeatReflect:
return REPEAT(MIRROR);
}
#undef REPEAT
}
static Bool gen3_check_repeat(uint32_t repeat)
{
switch (repeat) {
case RepeatNone:
case RepeatNormal:
case RepeatPad:
case RepeatReflect:
return TRUE;
default:
return FALSE;
}
}
static uint32_t gen3_filter(uint32_t filter)
{
switch (filter) {
default:
assert(0);
case PictFilterNearest:
return (FILTER_NEAREST << SS2_MAG_FILTER_SHIFT |
FILTER_NEAREST << SS2_MIN_FILTER_SHIFT |
MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT);
case PictFilterBilinear:
return (FILTER_LINEAR << SS2_MAG_FILTER_SHIFT |
FILTER_LINEAR << SS2_MIN_FILTER_SHIFT |
MIPFILTER_NONE << SS2_MIP_FILTER_SHIFT);
}
}
static bool gen3_check_filter(uint32_t filter)
{
switch (filter) {
case PictFilterNearest:
case PictFilterBilinear:
return TRUE;
default:
return FALSE;
}
}
static inline void
gen3_emit_composite_dstcoord(struct sna *sna, int16_t dstX, int16_t dstY)
{
OUT_VERTEX(dstX);
OUT_VERTEX(dstY);
}
fastcall static void
gen3_emit_composite_primitive_constant(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
int16_t dst_x = r->dst.x + op->dst.x;
int16_t dst_y = r->dst.y + op->dst.y;
gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y);
}
fastcall static void
gen3_emit_composite_primitive_identity_gradient(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
int16_t dst_x, dst_y;
int16_t src_x, src_y;
dst_x = r->dst.x + op->dst.x;
dst_y = r->dst.y + op->dst.y;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height);
OUT_VERTEX(src_x + r->width);
OUT_VERTEX(src_y + r->height);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height);
OUT_VERTEX(src_x);
OUT_VERTEX(src_y + r->height);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y);
OUT_VERTEX(src_x);
OUT_VERTEX(src_y);
}
fastcall static void
gen3_emit_composite_primitive_affine_gradient(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
PictTransform *transform = op->src.transform;
int16_t dst_x, dst_y;
int16_t src_x, src_y;
float sx, sy;
dst_x = r->dst.x + op->dst.x;
dst_y = r->dst.y + op->dst.y;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
sna_get_transformed_coordinates(src_x + r->width, src_y + r->height,
transform,
&sx, &sy);
gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height);
OUT_VERTEX(sx);
OUT_VERTEX(sy);
sna_get_transformed_coordinates(src_x, src_y + r->height,
transform,
&sx, &sy);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height);
OUT_VERTEX(sx);
OUT_VERTEX(sy);
sna_get_transformed_coordinates(src_x, src_y,
transform,
&sx, &sy);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y);
OUT_VERTEX(sx);
OUT_VERTEX(sy);
}
fastcall static void
gen3_emit_composite_primitive_identity_source(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float w = r->width;
float h = r->height;
float *v;
v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 12;
v[8] = v[4] = r->dst.x + op->dst.x;
v[0] = v[4] + w;
v[9] = r->dst.y + op->dst.y;
v[5] = v[1] = v[9] + h;
v[10] = v[6] = (r->src.x + op->src.offset[0]) * op->src.scale[0];
v[2] = v[6] + w * op->src.scale[0];
v[11] = (r->src.y + op->src.offset[1]) * op->src.scale[1];
v[7] = v[3] = v[11] + h * op->src.scale[1];
}
fastcall static void
gen3_emit_composite_primitive_affine_source(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
PictTransform *transform = op->src.transform;
int16_t dst_x = r->dst.x + op->dst.x;
int16_t dst_y = r->dst.y + op->dst.y;
int src_x = r->src.x + (int)op->src.offset[0];
int src_y = r->src.y + (int)op->src.offset[1];
float sx, sy;
_sna_get_transformed_coordinates(src_x + r->width, src_y + r->height,
transform,
&sx, &sy);
gen3_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height);
OUT_VERTEX(sx * op->src.scale[0]);
OUT_VERTEX(sy * op->src.scale[1]);
_sna_get_transformed_coordinates(src_x, src_y + r->height,
transform,
&sx, &sy);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y + r->height);
OUT_VERTEX(sx * op->src.scale[0]);
OUT_VERTEX(sy * op->src.scale[1]);
_sna_get_transformed_coordinates(src_x, src_y,
transform,
&sx, &sy);
gen3_emit_composite_dstcoord(sna, dst_x, dst_y);
OUT_VERTEX(sx * op->src.scale[0]);
OUT_VERTEX(sy * op->src.scale[1]);
}
fastcall static void
gen3_emit_composite_primitive_constant_identity_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float w = r->width;
float h = r->height;
float *v;
v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 12;
v[8] = v[4] = r->dst.x + op->dst.x;
v[0] = v[4] + w;
v[9] = r->dst.y + op->dst.y;
v[5] = v[1] = v[9] + h;
v[10] = v[6] = (r->mask.x + op->mask.offset[0]) * op->mask.scale[0];
v[2] = v[6] + w * op->mask.scale[0];
v[11] = (r->mask.y + op->mask.offset[1]) * op->mask.scale[1];
v[7] = v[3] = v[11] + h * op->mask.scale[1];
}
fastcall static void
gen3_emit_composite_primitive_identity_source_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float dst_x, dst_y;
float src_x, src_y;
float msk_x, msk_y;
float w, h;
float *v;
dst_x = r->dst.x + op->dst.x;
dst_y = r->dst.y + op->dst.y;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 18;
v[0] = dst_x + w;
v[1] = dst_y + h;
v[2] = (src_x + w) * op->src.scale[0];
v[3] = (src_y + h) * op->src.scale[1];
v[4] = (msk_x + w) * op->mask.scale[0];
v[5] = (msk_y + h) * op->mask.scale[1];
v[6] = dst_x;
v[7] = v[1];
v[8] = src_x * op->src.scale[0];
v[9] = v[3];
v[10] = msk_x * op->mask.scale[0];
v[11] =v[5];
v[12] = v[6];
v[13] = dst_y;
v[14] = v[8];
v[15] = src_y * op->src.scale[1];
v[16] = v[10];
v[17] = msk_y * op->mask.scale[1];
}
fastcall static void
gen3_emit_composite_primitive_affine_source_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
int16_t src_x, src_y;
float dst_x, dst_y;
float msk_x, msk_y;
float w, h;
float *v;
dst_x = r->dst.x + op->dst.x;
dst_y = r->dst.y + op->dst.y;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 18;
v[0] = dst_x + w;
v[1] = dst_y + h;
sna_get_transformed_coordinates(src_x + r->width, src_y + r->height,
op->src.transform,
&v[2], &v[3]);
v[2] *= op->src.scale[0];
v[3] *= op->src.scale[1];
v[4] = (msk_x + w) * op->mask.scale[0];
v[5] = (msk_y + h) * op->mask.scale[1];
v[6] = dst_x;
v[7] = v[1];
sna_get_transformed_coordinates(src_x, src_y + r->height,
op->src.transform,
&v[8], &v[9]);
v[8] *= op->src.scale[0];
v[9] *= op->src.scale[1];
v[10] = msk_x * op->mask.scale[0];
v[11] =v[5];
v[12] = v[6];
v[13] = dst_y;
sna_get_transformed_coordinates(src_x, src_y,
op->src.transform,
&v[14], &v[15]);
v[14] *= op->src.scale[0];
v[15] *= op->src.scale[1];
v[16] = v[10];
v[17] = msk_y * op->mask.scale[1];
}
static void
gen3_emit_composite_texcoord(struct sna *sna,
const struct sna_composite_channel *channel,
int16_t x, int16_t y)
{
float s = 0, t = 0, w = 1;
switch (channel->u.gen3.type) {
case SHADER_OPACITY:
case SHADER_NONE:
case SHADER_ZERO:
case SHADER_CONSTANT:
break;
case SHADER_LINEAR:
case SHADER_RADIAL:
case SHADER_TEXTURE:
x += channel->offset[0];
y += channel->offset[1];
if (channel->is_affine) {
sna_get_transformed_coordinates(x, y,
channel->transform,
&s, &t);
OUT_VERTEX(s * channel->scale[0]);
OUT_VERTEX(t * channel->scale[1]);
} else {
sna_get_transformed_coordinates_3d(x, y,
channel->transform,
&s, &t, &w);
OUT_VERTEX(s * channel->scale[0]);
OUT_VERTEX(t * channel->scale[1]);
OUT_VERTEX(0);
OUT_VERTEX(w);
}
break;
}
}
static void
gen3_emit_composite_vertex(struct sna *sna,
const struct sna_composite_op *op,
int16_t srcX, int16_t srcY,
int16_t maskX, int16_t maskY,
int16_t dstX, int16_t dstY)
{
gen3_emit_composite_dstcoord(sna, dstX, dstY);
gen3_emit_composite_texcoord(sna, &op->src, srcX, srcY);
gen3_emit_composite_texcoord(sna, &op->mask, maskX, maskY);
}
fastcall static void
gen3_emit_composite_primitive(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
gen3_emit_composite_vertex(sna, op,
r->src.x + r->width,
r->src.y + r->height,
r->mask.x + r->width,
r->mask.y + r->height,
op->dst.x + r->dst.x + r->width,
op->dst.y + r->dst.y + r->height);
gen3_emit_composite_vertex(sna, op,
r->src.x,
r->src.y + r->height,
r->mask.x,
r->mask.y + r->height,
op->dst.x + r->dst.x,
op->dst.y + r->dst.y + r->height);
gen3_emit_composite_vertex(sna, op,
r->src.x,
r->src.y,
r->mask.x,
r->mask.y,
op->dst.x + r->dst.x,
op->dst.y + r->dst.y);
}
static inline void
gen3_2d_perspective(struct sna *sna, int in, int out)
{
gen3_fs_rcp(out, 0, gen3_fs_operand(in, W, W, W, W));
gen3_fs_mul(out,
gen3_fs_operand(in, X, Y, ZERO, ONE),
gen3_fs_operand_reg(out));
}
static inline void
gen3_linear_coord(struct sna *sna,
const struct sna_composite_channel *channel,
int in, int out)
{
int c = channel->u.gen3.constants;
if (!channel->is_affine) {
gen3_2d_perspective(sna, in, FS_U0);
in = FS_U0;
}
gen3_fs_mov(out, gen3_fs_operand_zero());
gen3_fs_dp3(out, MASK_X,
gen3_fs_operand(in, X, Y, ONE, ZERO),
gen3_fs_operand_reg(c));
}
static void
gen3_radial_coord(struct sna *sna,
const struct sna_composite_channel *channel,
int in, int out)
{
int c = channel->u.gen3.constants;
if (!channel->is_affine) {
gen3_2d_perspective(sna, in, FS_U0);
in = FS_U0;
}
switch (channel->u.gen3.mode) {
case RADIAL_ONE:
/*
pdx = (x - c1x) / dr, pdy = (y - c1y) / dr;
r² = pdx*pdx + pdy*pdy
t = r²/sqrt(r²) - r1/dr;
*/
gen3_fs_mad(FS_U0, MASK_X | MASK_Y,
gen3_fs_operand(in, X, Y, ZERO, ZERO),
gen3_fs_operand(c, Z, Z, ZERO, ZERO),
gen3_fs_operand(c, NEG_X, NEG_Y, ZERO, ZERO));
gen3_fs_dp2add(FS_U0, MASK_X,
gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO),
gen3_fs_operand(FS_U0, X, Y, ZERO, ZERO),
gen3_fs_operand_zero());
gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U0, X, X, X, X));
gen3_fs_mad(out, 0,
gen3_fs_operand(FS_U0, X, ZERO, ZERO, ZERO),
gen3_fs_operand(out, X, ZERO, ZERO, ZERO),
gen3_fs_operand(c, W, ZERO, ZERO, ZERO));
break;
case RADIAL_TWO:
/*
pdx = x - c1x, pdy = y - c1y;
A = dx² + dy² - dr²
B = -2*(pdx*dx + pdy*dy + r1*dr);
C = pdx² + pdy² - r1²;
det = B*B - 4*A*C;
t = (-B + sqrt (det)) / (2 * A)
*/
/* u0.x = pdx, u0.y = pdy, u[0].z = r1; */
gen3_fs_add(FS_U0,
gen3_fs_operand(in, X, Y, ZERO, ZERO),
gen3_fs_operand(c, X, Y, Z, ZERO));
/* u0.x = pdx, u0.y = pdy, u[0].z = r1, u[0].w = B; */
gen3_fs_dp3(FS_U0, MASK_W,
gen3_fs_operand(FS_U0, X, Y, ONE, ZERO),
gen3_fs_operand(c+1, X, Y, Z, ZERO));
/* u1.x = pdx² + pdy² - r1²; [C] */
gen3_fs_dp3(FS_U1, MASK_X,
gen3_fs_operand(FS_U0, X, Y, Z, ZERO),
gen3_fs_operand(FS_U0, X, Y, NEG_Z, ZERO));
/* u1.x = C, u1.y = B, u1.z=-4*A; */
gen3_fs_mov_masked(FS_U1, MASK_Y, gen3_fs_operand(FS_U0, W, W, W, W));
gen3_fs_mov_masked(FS_U1, MASK_Z, gen3_fs_operand(c, W, W, W, W));
/* u1.x = B² - 4*A*C */
gen3_fs_dp2add(FS_U1, MASK_X,
gen3_fs_operand(FS_U1, X, Y, ZERO, ZERO),
gen3_fs_operand(FS_U1, Z, Y, ZERO, ZERO),
gen3_fs_operand_zero());
/* out.x = -B + sqrt (B² - 4*A*C), */
gen3_fs_rsq(out, MASK_X, gen3_fs_operand(FS_U1, X, X, X, X));
gen3_fs_mad(out, MASK_X,
gen3_fs_operand(out, X, ZERO, ZERO, ZERO),
gen3_fs_operand(FS_U1, X, ZERO, ZERO, ZERO),
gen3_fs_operand(FS_U0, NEG_W, ZERO, ZERO, ZERO));
/* out.x = (-B + sqrt (B² - 4*A*C)) / (2 * A), */
gen3_fs_mul(out,
gen3_fs_operand(out, X, ZERO, ZERO, ZERO),
gen3_fs_operand(c+1, W, ZERO, ZERO, ZERO));
break;
}
}
static void
gen3_composite_emit_shader(struct sna *sna,
const struct sna_composite_op *op,
uint8_t blend)
{
Bool dst_is_alpha = PIXMAN_FORMAT_RGB(op->dst.format) == 0;
const struct sna_composite_channel *src, *mask;
struct gen3_render_state *state = &sna->render_state.gen3;
uint32_t shader_offset, id;
int src_reg, mask_reg;
int t, length;
src = &op->src;
mask = &op->mask;
if (mask->u.gen3.type == SHADER_NONE)
mask = NULL;
if (mask && src->is_opaque &&
gen3_blend_op[blend].src_alpha &&
op->has_component_alpha) {
src = mask;
mask = NULL;
}
id = (src->u.gen3.type |
src->is_affine << 4 |
src->alpha_fixup << 5 |
src->rb_reversed << 6);
if (mask) {
id |= (mask->u.gen3.type << 8 |
mask->is_affine << 12 |
gen3_blend_op[blend].src_alpha << 13 |
op->has_component_alpha << 14 |
mask->alpha_fixup << 15 |
mask->rb_reversed << 16);
}
id |= dst_is_alpha << 24;
id |= op->rb_reversed << 25;
if (id == state->last_shader)
return;
state->last_shader = id;
shader_offset = sna->kgem.nbatch++;
t = 0;
switch (src->u.gen3.type) {
case SHADER_NONE:
case SHADER_OPACITY:
assert(0);
case SHADER_ZERO:
break;
case SHADER_CONSTANT:
gen3_fs_dcl(FS_T8);
src_reg = FS_T8;
break;
case SHADER_TEXTURE:
case SHADER_RADIAL:
case SHADER_LINEAR:
gen3_fs_dcl(FS_S0);
gen3_fs_dcl(FS_T0);
t++;
break;
}
if (mask == NULL) {
if (src->u.gen3.type == SHADER_ZERO) {
gen3_fs_mov(FS_OC, gen3_fs_operand_zero());
goto done;
}
if (src->alpha_fixup && dst_is_alpha) {
gen3_fs_mov(FS_OC, gen3_fs_operand_one());
goto done;
}
/* No mask, so load directly to output color */
if (src->u.gen3.type != SHADER_CONSTANT) {
if (dst_is_alpha || src->rb_reversed ^ op->rb_reversed)
src_reg = FS_R0;
else
src_reg = FS_OC;
}
switch (src->u.gen3.type) {
case SHADER_LINEAR:
gen3_linear_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(src_reg, FS_S0, FS_R0);
break;
case SHADER_RADIAL:
gen3_radial_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(src_reg, FS_S0, FS_R0);
break;
case SHADER_TEXTURE:
if (src->is_affine)
gen3_fs_texld(src_reg, FS_S0, FS_T0);
else
gen3_fs_texldp(src_reg, FS_S0, FS_T0);
break;
case SHADER_NONE:
case SHADER_CONSTANT:
case SHADER_ZERO:
break;
}
if (src_reg != FS_OC) {
if (src->alpha_fixup)
gen3_fs_mov(FS_OC,
src->rb_reversed ^ op->rb_reversed ?
gen3_fs_operand(src_reg, Z, Y, X, ONE) :
gen3_fs_operand(src_reg, X, Y, Z, ONE));
else if (dst_is_alpha)
gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, W, W, W, W));
else if (src->rb_reversed ^ op->rb_reversed)
gen3_fs_mov(FS_OC, gen3_fs_operand(src_reg, Z, Y, X, W));
else
gen3_fs_mov(FS_OC, gen3_fs_operand_reg(src_reg));
} else if (src->alpha_fixup)
gen3_fs_mov_masked(FS_OC, MASK_W, gen3_fs_operand_one());
} else {
int out_reg = FS_OC;
if (op->rb_reversed)
out_reg = FS_U0;
switch (mask->u.gen3.type) {
case SHADER_CONSTANT:
gen3_fs_dcl(FS_T9);
mask_reg = FS_T9;
break;
case SHADER_TEXTURE:
case SHADER_LINEAR:
case SHADER_RADIAL:
gen3_fs_dcl(FS_S0 + t);
case SHADER_OPACITY:
gen3_fs_dcl(FS_T0 + t);
break;
case SHADER_NONE:
case SHADER_ZERO:
assert(0);
break;
}
t = 0;
switch (src->u.gen3.type) {
case SHADER_LINEAR:
gen3_linear_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(FS_R0, FS_S0, FS_R0);
src_reg = FS_R0;
t++;
break;
case SHADER_RADIAL:
gen3_radial_coord(sna, src, FS_T0, FS_R0);
gen3_fs_texld(FS_R0, FS_S0, FS_R0);
src_reg = FS_R0;
t++;
break;
case SHADER_TEXTURE:
if (src->is_affine)
gen3_fs_texld(FS_R0, FS_S0, FS_T0);
else
gen3_fs_texldp(FS_R0, FS_S0, FS_T0);
src_reg = FS_R0;
t++;
break;
case SHADER_CONSTANT:
case SHADER_NONE:
case SHADER_ZERO:
break;
}
if (src->alpha_fixup)
gen3_fs_mov_masked(src_reg, MASK_W, gen3_fs_operand_one());
if (src->rb_reversed)
gen3_fs_mov(src_reg, gen3_fs_operand(src_reg, Z, Y, X, W));
switch (mask->u.gen3.type) {
case SHADER_LINEAR:
gen3_linear_coord(sna, mask, FS_T0 + t, FS_R1);
gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1);
mask_reg = FS_R1;
break;
case SHADER_RADIAL:
gen3_radial_coord(sna, mask, FS_T0 + t, FS_R1);
gen3_fs_texld(FS_R1, FS_S0 + t, FS_R1);
mask_reg = FS_R1;
break;
case SHADER_TEXTURE:
if (mask->is_affine)
gen3_fs_texld(FS_R1, FS_S0 + t, FS_T0 + t);
else
gen3_fs_texldp(FS_R1, FS_S0 + t, FS_T0 + t);
mask_reg = FS_R1;
break;
case SHADER_OPACITY:
if (dst_is_alpha) {
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, W, W, W, W),
gen3_fs_operand(FS_T0 + t, X, X, X, X));
} else {
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, X, Y, Z, W),
gen3_fs_operand(FS_T0 + t, X, X, X, X));
}
goto mask_done;
case SHADER_CONSTANT:
case SHADER_NONE:
case SHADER_ZERO:
break;
}
if (mask->alpha_fixup)
gen3_fs_mov_masked(mask_reg, MASK_W, gen3_fs_operand_one());
if (mask->rb_reversed)
gen3_fs_mov(mask_reg, gen3_fs_operand(mask_reg, Z, Y, X, W));
if (dst_is_alpha) {
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, W, W, W, W),
gen3_fs_operand(mask_reg, W, W, W, W));
} else {
/* If component alpha is active in the mask and the blend
* operation uses the source alpha, then we know we don't
* need the source value (otherwise we would have hit a
* fallback earlier), so we provide the source alpha (src.A *
* mask.X) as output color.
* Conversely, if CA is set and we don't need the source alpha,
* then we produce the source value (src.X * mask.X) and the
* source alpha is unused. Otherwise, we provide the non-CA
* source value (src.X * mask.A).
*/
if (op->has_component_alpha) {
if (gen3_blend_op[blend].src_alpha)
gen3_fs_mul(out_reg,
gen3_fs_operand(src_reg, W, W, W, W),
gen3_fs_operand_reg(mask_reg));
else
gen3_fs_mul(out_reg,
gen3_fs_operand_reg(src_reg),
gen3_fs_operand_reg(mask_reg));
} else {
gen3_fs_mul(out_reg,
gen3_fs_operand_reg(src_reg),
gen3_fs_operand(mask_reg, W, W, W, W));
}
}
mask_done:
if (op->rb_reversed)
gen3_fs_mov(FS_OC, gen3_fs_operand(FS_U0, Z, Y, X, W));
}
done:
length = sna->kgem.nbatch - shader_offset;
sna->kgem.batch[shader_offset] =
_3DSTATE_PIXEL_SHADER_PROGRAM | (length - 2);
}
static uint32_t gen3_ms_tiling(uint32_t tiling)
{
uint32_t v = 0;
switch (tiling) {
case I915_TILING_Y: v |= MS3_TILE_WALK;
case I915_TILING_X: v |= MS3_TILED_SURFACE;
case I915_TILING_NONE: break;
}
return v;
}
static void gen3_emit_invariant(struct sna *sna)
{
/* Disable independent alpha blend */
OUT_BATCH(_3DSTATE_INDEPENDENT_ALPHA_BLEND_CMD | IAB_MODIFY_ENABLE |
IAB_MODIFY_FUNC | BLENDFUNC_ADD << IAB_FUNC_SHIFT |
IAB_MODIFY_SRC_FACTOR | BLENDFACT_ONE << IAB_SRC_FACTOR_SHIFT |
IAB_MODIFY_DST_FACTOR | BLENDFACT_ZERO << IAB_DST_FACTOR_SHIFT);
OUT_BATCH(_3DSTATE_COORD_SET_BINDINGS |
CSB_TCB(0, 0) |
CSB_TCB(1, 1) |
CSB_TCB(2, 2) |
CSB_TCB(3, 3) |
CSB_TCB(4, 4) |
CSB_TCB(5, 5) |
CSB_TCB(6, 6) |
CSB_TCB(7, 7));
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(3) | I1_LOAD_S(4) | I1_LOAD_S(5) | 2);
OUT_BATCH(0); /* Disable texture coordinate wrap-shortest */
OUT_BATCH((1 << S4_POINT_WIDTH_SHIFT) |
S4_LINE_WIDTH_ONE |
S4_CULLMODE_NONE |
S4_VFMT_XY);
OUT_BATCH(0); /* Disable fog/stencil. *Enable* write mask. */
OUT_BATCH(_3DSTATE_SCISSOR_ENABLE_CMD | DISABLE_SCISSOR_RECT);
OUT_BATCH(_3DSTATE_DEPTH_SUBRECT_DISABLE);
OUT_BATCH(_3DSTATE_LOAD_INDIRECT);
OUT_BATCH(0x00000000);
OUT_BATCH(_3DSTATE_STIPPLE);
OUT_BATCH(0x00000000);
sna->render_state.gen3.need_invariant = FALSE;
}
static void
gen3_get_batch(struct sna *sna,
const struct sna_composite_op *op)
{
#define MAX_OBJECTS 3 /* worst case: dst + src + mask */
kgem_set_mode(&sna->kgem, KGEM_RENDER);
if (!kgem_check_batch(&sna->kgem, 200)) {
DBG(("%s: flushing batch: size %d > %d\n",
__FUNCTION__, 200,
sna->kgem.surface-sna->kgem.nbatch));
kgem_submit(&sna->kgem);
}
if (sna->kgem.nreloc > KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS) {
DBG(("%s: flushing batch: reloc %d >= %d\n",
__FUNCTION__,
sna->kgem.nreloc,
(int)KGEM_RELOC_SIZE(&sna->kgem) - MAX_OBJECTS));
kgem_submit(&sna->kgem);
}
if (sna->kgem.nexec > KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1) {
DBG(("%s: flushing batch: exec %d >= %d\n",
__FUNCTION__,
sna->kgem.nexec,
(int)KGEM_EXEC_SIZE(&sna->kgem) - MAX_OBJECTS - 1));
kgem_submit(&sna->kgem);
}
if (sna->render_state.gen3.need_invariant)
gen3_emit_invariant(sna);
#undef MAX_OBJECTS
}
static void gen3_emit_composite_state(struct sna *sna,
const struct sna_composite_op *op)
{
struct gen3_render_state *state = &sna->render_state.gen3;
uint32_t map[4];
uint32_t sampler[4];
struct kgem_bo *bo[2];
int tex_count, n;
uint32_t ss2;
gen3_get_batch(sna, op);
/* BUF_INFO is an implicit flush, so skip if the target is unchanged. */
if (op->dst.bo->unique_id != state->current_dst) {
uint32_t v;
OUT_BATCH(_3DSTATE_BUF_INFO_CMD);
OUT_BATCH(BUF_3D_ID_COLOR_BACK |
gen3_buf_tiling(op->dst.bo->tiling) |
op->dst.bo->pitch);
OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
op->dst.bo,
I915_GEM_DOMAIN_RENDER << 16 |
I915_GEM_DOMAIN_RENDER,
0));
OUT_BATCH(_3DSTATE_DST_BUF_VARS_CMD);
OUT_BATCH(gen3_get_dst_format(op->dst.format));
v = (DRAW_YMAX(op->dst.height - 1) |
DRAW_XMAX(op->dst.width - 1));
if (v != state->last_drawrect_limit) {
OUT_BATCH(_3DSTATE_DRAW_RECT_CMD);
OUT_BATCH(0);
OUT_BATCH(0);
OUT_BATCH(v);
OUT_BATCH(0);
state->last_drawrect_limit = v;
}
state->current_dst = op->dst.bo->unique_id;
}
kgem_bo_mark_dirty(op->dst.bo);
ss2 = ~0;
tex_count = 0;
switch (op->src.u.gen3.type) {
case SHADER_OPACITY:
case SHADER_NONE:
assert(0);
case SHADER_ZERO:
break;
case SHADER_CONSTANT:
if (op->src.u.gen3.mode != state->last_diffuse) {
OUT_BATCH(_3DSTATE_DFLT_DIFFUSE_CMD);
OUT_BATCH(op->src.u.gen3.mode);
state->last_diffuse = op->src.u.gen3.mode;
}
break;
case SHADER_LINEAR:
case SHADER_RADIAL:
case SHADER_TEXTURE:
ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT);
ss2 |= S2_TEXCOORD_FMT(tex_count,
op->src.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D);
map[tex_count * 2 + 0] =
op->src.card_format |
gen3_ms_tiling(op->src.bo->tiling) |
(op->src.height - 1) << MS3_HEIGHT_SHIFT |
(op->src.width - 1) << MS3_WIDTH_SHIFT;
map[tex_count * 2 + 1] =
(op->src.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT;
sampler[tex_count * 2 + 0] = op->src.filter;
sampler[tex_count * 2 + 1] =
op->src.repeat |
tex_count << SS3_TEXTUREMAP_INDEX_SHIFT;
bo[tex_count] = op->src.bo;
tex_count++;
break;
}
switch (op->mask.u.gen3.type) {
case SHADER_NONE:
case SHADER_ZERO:
break;
case SHADER_CONSTANT:
if (op->mask.u.gen3.mode != state->last_specular) {
OUT_BATCH(_3DSTATE_DFLT_SPEC_CMD);
OUT_BATCH(op->mask.u.gen3.mode);
state->last_specular = op->mask.u.gen3.mode;
}
break;
case SHADER_LINEAR:
case SHADER_RADIAL:
case SHADER_TEXTURE:
ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT);
ss2 |= S2_TEXCOORD_FMT(tex_count,
op->mask.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_4D);
map[tex_count * 2 + 0] =
op->mask.card_format |
gen3_ms_tiling(op->mask.bo->tiling) |
(op->mask.height - 1) << MS3_HEIGHT_SHIFT |
(op->mask.width - 1) << MS3_WIDTH_SHIFT;
map[tex_count * 2 + 1] =
(op->mask.bo->pitch / 4 - 1) << MS4_PITCH_SHIFT;
sampler[tex_count * 2 + 0] = op->mask.filter;
sampler[tex_count * 2 + 1] =
op->mask.repeat |
tex_count << SS3_TEXTUREMAP_INDEX_SHIFT;
bo[tex_count] = op->mask.bo;
tex_count++;
break;
case SHADER_OPACITY:
ss2 &= ~S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_NOT_PRESENT);
ss2 |= S2_TEXCOORD_FMT(tex_count, TEXCOORDFMT_1D);
break;
}
{
uint32_t blend_offset = sna->kgem.nbatch;
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(2) | I1_LOAD_S(6) | 1);
OUT_BATCH(ss2);
OUT_BATCH(gen3_get_blend_cntl(op->op,
op->has_component_alpha,
op->dst.format));
if (memcmp(sna->kgem.batch + state->last_blend + 1,
sna->kgem.batch + blend_offset + 1,
2 * 4) == 0)
sna->kgem.nbatch = blend_offset;
else
state->last_blend = blend_offset;
}
if (op->u.gen3.num_constants) {
int count = op->u.gen3.num_constants;
if (state->last_constants) {
int last = sna->kgem.batch[state->last_constants+1];
if (last == (1 << (count >> 2)) - 1 &&
memcmp(&sna->kgem.batch[state->last_constants+2],
op->u.gen3.constants,
count * sizeof(uint32_t)) == 0)
count = 0;
}
if (count) {
state->last_constants = sna->kgem.nbatch;
OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | count);
OUT_BATCH((1 << (count >> 2)) - 1);
memcpy(sna->kgem.batch + sna->kgem.nbatch,
op->u.gen3.constants,
count * sizeof(uint32_t));
sna->kgem.nbatch += count;
}
}
if (tex_count != 0) {
uint32_t rewind;
n = 0;
if (tex_count == state->tex_count) {
for (; n < tex_count; n++) {
if (map[2*n+0] != state->tex_map[2*n+0] ||
map[2*n+1] != state->tex_map[2*n+1] ||
state->tex_handle[n] != bo[n]->handle ||
state->tex_delta[n] != bo[n]->delta)
break;
}
}
if (n < tex_count) {
OUT_BATCH(_3DSTATE_MAP_STATE | (3 * tex_count));
OUT_BATCH((1 << tex_count) - 1);
for (n = 0; n < tex_count; n++) {
OUT_BATCH(kgem_add_reloc(&sna->kgem,
sna->kgem.nbatch,
bo[n],
I915_GEM_DOMAIN_SAMPLER<< 16,
0));
OUT_BATCH(map[2*n + 0]);
OUT_BATCH(map[2*n + 1]);
state->tex_map[2*n+0] = map[2*n+0];
state->tex_map[2*n+1] = map[2*n+1];
state->tex_handle[n] = bo[n]->handle;
state->tex_delta[n] = bo[n]->delta;
}
state->tex_count = n;
}
rewind = sna->kgem.nbatch;
OUT_BATCH(_3DSTATE_SAMPLER_STATE | (3 * tex_count));
OUT_BATCH((1 << tex_count) - 1);
for (n = 0; n < tex_count; n++) {
OUT_BATCH(sampler[2*n + 0]);
OUT_BATCH(sampler[2*n + 1]);
OUT_BATCH(0);
}
if (state->last_sampler &&
memcmp(&sna->kgem.batch[state->last_sampler+1],
&sna->kgem.batch[rewind + 1],
(3*tex_count + 1)*sizeof(uint32_t)) == 0)
sna->kgem.nbatch = rewind;
else
state->last_sampler = rewind;
}
gen3_composite_emit_shader(sna, op, op->op);
}
static void gen3_magic_ca_pass(struct sna *sna,
const struct sna_composite_op *op)
{
if (!op->need_magic_ca_pass)
return;
DBG(("%s(%d)\n", __FUNCTION__,
sna->render.vertex_index - sna->render.vertex_start));
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(6) | 0);
OUT_BATCH(gen3_get_blend_cntl(PictOpAdd, TRUE, op->dst.format));
gen3_composite_emit_shader(sna, op, PictOpAdd);
OUT_BATCH(PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL |
(sna->render.vertex_index - sna->render.vertex_start));
OUT_BATCH(sna->render.vertex_start);
sna->render_state.gen3.last_blend = 0;
}
static void gen3_vertex_flush(struct sna *sna)
{
if (sna->render_state.gen3.vertex_offset == 0 ||
sna->render.vertex_index == sna->render.vertex_start)
return;
DBG(("%s[%x] = %d\n", __FUNCTION__,
4*sna->render_state.gen3.vertex_offset,
sna->render.vertex_index - sna->render.vertex_start));
sna->kgem.batch[sna->render_state.gen3.vertex_offset] =
PRIM3D_RECTLIST | PRIM3D_INDIRECT_SEQUENTIAL |
(sna->render.vertex_index - sna->render.vertex_start);
sna->kgem.batch[sna->render_state.gen3.vertex_offset + 1] =
sna->render.vertex_start;
if (sna->render.op)
gen3_magic_ca_pass(sna, sna->render.op);
sna->render_state.gen3.vertex_offset = 0;
}
static void gen3_vertex_finish(struct sna *sna, Bool last)
{
struct kgem_bo *bo;
int delta;
DBG(("%s: last? %d\n", __FUNCTION__, last));
gen3_vertex_flush(sna);
if (!sna->render.vertex_used)
return;
if (last && sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) {
DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__,
sna->render.vertex_used, sna->kgem.nbatch));
memcpy(sna->kgem.batch + sna->kgem.nbatch,
sna->render.vertex_data,
sna->render.vertex_used * 4);
delta = sna->kgem.nbatch * 4;
bo = NULL;
sna->kgem.nbatch += sna->render.vertex_used;
} else {
bo = kgem_create_linear(&sna->kgem, 4*sna->render.vertex_used);
if (bo && !kgem_bo_write(&sna->kgem, bo,
sna->render.vertex_data,
4*sna->render.vertex_used)) {
kgem_bo_destroy(&sna->kgem, bo);
return;
}
delta = 0;
DBG(("%s: new vbo: %d\n", __FUNCTION__,
sna->render.vertex_used));
}
DBG(("%s: reloc = %d\n", __FUNCTION__,
sna->render.vertex_reloc[0]));
sna->kgem.batch[sna->render.vertex_reloc[0]] =
kgem_add_reloc(&sna->kgem,
sna->render.vertex_reloc[0],
bo,
I915_GEM_DOMAIN_VERTEX << 16,
delta);
sna->render.vertex_reloc[0] = 0;
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
if (bo)
kgem_bo_destroy(&sna->kgem, bo);
}
static bool gen3_rectangle_begin(struct sna *sna,
const struct sna_composite_op *op)
{
int ndwords, i1_cmd = 0, i1_len = 0;
struct gen3_render_state *state = &sna->render_state.gen3;
ndwords = 0;
if (state->vertex_offset == 0) {
ndwords += 2;
if (op->need_magic_ca_pass)
ndwords += 100;
}
if (sna->render.vertex_reloc[0] == 0)
i1_len++, i1_cmd |= I1_LOAD_S(0), ndwords++;
if (state->floats_per_vertex != op->floats_per_vertex)
i1_len++, i1_cmd |= I1_LOAD_S(1), ndwords++;
if (ndwords == 0)
return true;
if (!kgem_check_batch(&sna->kgem, ndwords+1))
return false;
if (i1_cmd) {
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | i1_cmd | (i1_len - 1));
if (sna->render.vertex_reloc[0] == 0)
sna->render.vertex_reloc[0] = sna->kgem.nbatch++;
if (state->floats_per_vertex != op->floats_per_vertex) {
state->floats_per_vertex = op->floats_per_vertex;
OUT_BATCH(state->floats_per_vertex << S1_VERTEX_WIDTH_SHIFT |
state->floats_per_vertex << S1_VERTEX_PITCH_SHIFT);
}
}
if (state->vertex_offset == 0) {
if (sna->kgem.nbatch == 2 + state->last_vertex_offset) {
state->vertex_offset = state->last_vertex_offset;
} else {
state->vertex_offset = sna->kgem.nbatch;
OUT_BATCH(MI_NOOP); /* to be filled later */
OUT_BATCH(MI_NOOP);
sna->render.vertex_start = sna->render.vertex_index;
state->last_vertex_offset = state->vertex_offset;
}
}
return true;
}
static int gen3_get_rectangles__flush(struct sna *sna, bool ca)
{
if (!kgem_check_batch(&sna->kgem, ca ? 105: 5))
return 0;
if (sna->kgem.nexec > KGEM_EXEC_SIZE(&sna->kgem) - 2)
return 0;
if (sna->kgem.nreloc > KGEM_RELOC_SIZE(&sna->kgem) - 1)
return 0;
gen3_vertex_finish(sna, FALSE);
assert(sna->render.vertex_index == 0);
assert(sna->render.vertex_used == 0);
return ARRAY_SIZE(sna->render.vertex_data);
}
inline static int gen3_get_rectangles(struct sna *sna,
const struct sna_composite_op *op,
int want)
{
int rem = vertex_space(sna);
DBG(("%s: want=%d, rem=%d\n",
__FUNCTION__, 3*want*op->floats_per_vertex, rem));
assert(sna->render.vertex_index * op->floats_per_vertex == sna->render.vertex_used);
if (op->floats_per_vertex*3 > rem) {
DBG(("flushing vbo for %s: %d < %d\n",
__FUNCTION__, rem, 3*op->floats_per_vertex));
rem = gen3_get_rectangles__flush(sna, op->need_magic_ca_pass);
if (rem == 0)
return 0;
}
if (!gen3_rectangle_begin(sna, op)) {
DBG(("%s: flushing batch\n", __FUNCTION__));
return 0;
}
if (want > 1 && want * op->floats_per_vertex*3 > rem)
want = rem / (3*op->floats_per_vertex);
sna->render.vertex_index += 3*want;
assert(want);
assert(sna->render.vertex_index * op->floats_per_vertex <= ARRAY_SIZE(sna->render.vertex_data));
return want;
}
fastcall static void
gen3_render_composite_blt(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n", __FUNCTION__,
r->src.x, r->src.y, op->src.offset[0], op->src.offset[1],
r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1],
r->dst.x, r->dst.y, op->dst.x, op->dst.y,
r->width, r->height));
if (!gen3_get_rectangles(sna, op, 1)) {
gen3_emit_composite_state(sna, op);
gen3_get_rectangles(sna, op, 1);
}
op->prim_emit(sna, op, r);
}
static void
gen3_render_composite_boxes(struct sna *sna,
const struct sna_composite_op *op,
const BoxRec *box, int nbox)
{
DBG(("%s: nbox=%d, src=+(%d, %d), mask=+(%d, %d), dst=+(%d, %d)\n",
__FUNCTION__, nbox,
op->src.offset[0], op->src.offset[1],
op->mask.offset[0], op->mask.offset[1],
op->dst.x, op->dst.y));
do {
int nbox_this_time;
nbox_this_time = gen3_get_rectangles(sna, op, nbox);
if (nbox_this_time == 0) {
gen3_emit_composite_state(sna, op);
nbox_this_time = gen3_get_rectangles(sna, op, nbox);
}
nbox -= nbox_this_time;
do {
struct sna_composite_rectangles r;
DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
r.dst.x = box->x1; r.dst.y = box->y1;
r.width = box->x2 - box->x1;
r.height = box->y2 - box->y1;
r.src = r.mask = r.dst;
op->prim_emit(sna, op, &r);
box++;
} while (--nbox_this_time);
} while (nbox);
}
static void
gen3_render_composite_done(struct sna *sna,
const struct sna_composite_op *op)
{
assert(sna->render.op == op);
gen3_vertex_flush(sna);
sna->render.op = NULL;
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
DBG(("%s()\n", __FUNCTION__));
sna_render_composite_redirect_done(sna, op);
if (op->src.bo)
kgem_bo_destroy(&sna->kgem, op->src.bo);
if (op->mask.bo)
kgem_bo_destroy(&sna->kgem, op->mask.bo);
}
static void
gen3_render_reset(struct sna *sna)
{
struct gen3_render_state *state = &sna->render_state.gen3;
state->need_invariant = TRUE;
state->current_dst = 0;
state->tex_count = 0;
state->last_drawrect_limit = ~0U;
state->last_target = 0;
state->last_blend = 0;
state->last_constants = 0;
state->last_sampler = 0;
state->last_shader = 0;
state->last_diffuse = 0xcc00ffee;
state->last_specular = 0xcc00ffee;
state->floats_per_vertex = 0;
state->last_floats_per_vertex = 0;
state->last_vertex_offset = 0;
state->vertex_offset = 0;
assert(sna->render.vertex_used == 0);
assert(sna->render.vertex_index == 0);
assert(sna->render.vertex_reloc[0] == 0);
}
static Bool gen3_composite_channel_set_format(struct sna_composite_channel *channel,
CARD32 format)
{
int i;
for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) {
if (gen3_tex_formats[i].fmt == format) {
channel->card_format = gen3_tex_formats[i].card_fmt;
channel->rb_reversed = gen3_tex_formats[i].rb_reversed;
return TRUE;
}
}
return FALSE;
}
static Bool source_is_covered(PicturePtr picture,
int x, int y,
int width, int height)
{
int x1, y1, x2, y2;
if (picture->repeat && picture->repeatType != RepeatNone)
return TRUE;
if (picture->pDrawable == NULL)
return FALSE;
if (picture->transform) {
pixman_box16_t sample;
sample.x1 = x;
sample.y1 = y;
sample.x2 = x + width;
sample.y2 = y + height;
pixman_transform_bounds(picture->transform, &sample);
x1 = sample.x1;
x2 = sample.x2;
y1 = sample.y1;
y2 = sample.y2;
} else {
x1 = x;
y1 = y;
x2 = x + width;
y2 = y + height;
}
return
x1 >= 0 && y1 >= 0 &&
x2 <= picture->pDrawable->width &&
y2 <= picture->pDrawable->height;
}
static Bool gen3_composite_channel_set_xformat(PicturePtr picture,
struct sna_composite_channel *channel,
int x, int y,
int width, int height)
{
int i;
if (PICT_FORMAT_A(picture->format) != 0)
return FALSE;
if (width == 0 || height == 0)
return FALSE;
if (!source_is_covered(picture, x, y, width, height))
return FALSE;
for (i = 0; i < ARRAY_SIZE(gen3_tex_formats); i++) {
if (gen3_tex_formats[i].xfmt == picture->format) {
channel->card_format = gen3_tex_formats[i].card_fmt;
channel->rb_reversed = gen3_tex_formats[i].rb_reversed;
channel->alpha_fixup = true;
return TRUE;
}
}
return FALSE;
}
static int
gen3_init_solid(struct sna *sna,
struct sna_composite_channel *channel,
uint32_t color)
{
channel->u.gen3.mode = color;
channel->u.gen3.type = SHADER_CONSTANT;
if (color == 0)
channel->u.gen3.type = SHADER_ZERO;
if ((color & 0xff000000) == 0xff000000)
channel->is_opaque = true;
/* for consistency */
channel->repeat = RepeatNormal;
channel->filter = PictFilterNearest;
channel->pict_format = PICT_a8r8g8b8;
channel->card_format = MAPSURF_32BIT | MT_32BIT_ARGB8888;
return 1;
}
static void gen3_composite_channel_convert(struct sna_composite_channel *channel)
{
if (channel->u.gen3.type == SHADER_TEXTURE)
channel->repeat = gen3_texture_repeat(channel->repeat);
else
channel->repeat = gen3_gradient_repeat(channel->repeat);
channel->filter = gen3_filter(channel->filter);
if (channel->card_format == 0)
gen3_composite_channel_set_format(channel, channel->pict_format);
}
static Bool gen3_gradient_setup(struct sna *sna,
PicturePtr picture,
struct sna_composite_channel *channel,
int16_t ox, int16_t oy)
{
int16_t dx, dy;
if (picture->repeat == 0) {
channel->repeat = RepeatNone;
} else switch (picture->repeatType) {
case RepeatNone:
case RepeatNormal:
case RepeatPad:
case RepeatReflect:
channel->repeat = picture->repeatType;
break;
default:
return FALSE;
}
channel->bo =
sna_render_get_gradient(sna,
(PictGradient *)picture->pSourcePict);
if (channel->bo == NULL)
return FALSE;
channel->pict_format = PICT_a8r8g8b8;
channel->card_format = MAPSURF_32BIT | MT_32BIT_ARGB8888;
channel->filter = PictFilterBilinear;
channel->is_affine = sna_transform_is_affine(picture->transform);
if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) {
DBG(("%s: integer translation (%d, %d), removing\n",
__FUNCTION__, dx, dy));
ox += dx;
oy += dy;
channel->transform = NULL;
} else
channel->transform = picture->transform;
channel->width = channel->bo->pitch / 4;
channel->height = 1;
channel->offset[0] = ox;
channel->offset[1] = oy;
channel->scale[0] = channel->scale[1] = 1;
return TRUE;
}
static int
gen3_init_linear(struct sna *sna,
PicturePtr picture,
struct sna_composite_op *op,
struct sna_composite_channel *channel,
int ox, int oy)
{
PictLinearGradient *linear =
(PictLinearGradient *)picture->pSourcePict;
float x0, y0, sf;
float dx, dy, offset;
int n;
DBG(("%s: p1=(%f, %f), p2=(%f, %f)\n",
__FUNCTION__,
xFixedToDouble(linear->p1.x), xFixedToDouble(linear->p1.y),
xFixedToDouble(linear->p2.x), xFixedToDouble(linear->p2.y)));
if (linear->p2.x == linear->p1.x && linear->p2.y == linear->p1.y)
return 0;
dx = xFixedToDouble(linear->p2.x - linear->p1.x);
dy = xFixedToDouble(linear->p2.y - linear->p1.y);
sf = dx*dx + dy*dy;
dx /= sf;
dy /= sf;
x0 = xFixedToDouble(linear->p1.x);
y0 = xFixedToDouble(linear->p1.y);
offset = dx*x0 + dy*y0;
n = op->u.gen3.num_constants;
channel->u.gen3.constants = FS_C0 + n / 4;
op->u.gen3.constants[n++] = dx;
op->u.gen3.constants[n++] = dy;
op->u.gen3.constants[n++] = -offset;
op->u.gen3.constants[n++] = 0;
if (!gen3_gradient_setup(sna, picture, channel, ox, oy))
return 0;
channel->u.gen3.type = SHADER_LINEAR;
op->u.gen3.num_constants = n;
DBG(("%s: dx=%f, dy=%f, offset=%f, constants=%d\n",
__FUNCTION__, dx, dy, -offset, channel->u.gen3.constants - FS_C0));
return 1;
}
static int
gen3_init_radial(struct sna *sna,
PicturePtr picture,
struct sna_composite_op *op,
struct sna_composite_channel *channel,
int ox, int oy)
{
PictRadialGradient *radial = (PictRadialGradient *)picture->pSourcePict;
double dx, dy, dr, r1;
int n;
dx = xFixedToDouble(radial->c2.x - radial->c1.x);
dy = xFixedToDouble(radial->c2.y - radial->c1.y);
dr = xFixedToDouble(radial->c2.radius - radial->c1.radius);
r1 = xFixedToDouble(radial->c1.radius);
n = op->u.gen3.num_constants;
channel->u.gen3.constants = FS_C0 + n / 4;
if (radial->c2.x == radial->c1.x && radial->c2.y == radial->c1.y) {
if (radial->c2.radius == radial->c1.radius)
return 0;
op->u.gen3.constants[n++] = xFixedToDouble(radial->c1.x) / dr;
op->u.gen3.constants[n++] = xFixedToDouble(radial->c1.y) / dr;
op->u.gen3.constants[n++] = 1. / dr;
op->u.gen3.constants[n++] = -r1 / dr;
channel->u.gen3.mode = RADIAL_ONE;
} else {
op->u.gen3.constants[n++] = -xFixedToDouble(radial->c1.x);
op->u.gen3.constants[n++] = -xFixedToDouble(radial->c1.y);
op->u.gen3.constants[n++] = r1;
op->u.gen3.constants[n++] = -4 * (dx*dx + dy*dy - dr*dr);
op->u.gen3.constants[n++] = -2 * dx;
op->u.gen3.constants[n++] = -2 * dy;
op->u.gen3.constants[n++] = -2 * r1 * dr;
op->u.gen3.constants[n++] = 1 / (2 * (dx*dx + dy*dy - dr*dr));
channel->u.gen3.mode = RADIAL_TWO;
}
if (!gen3_gradient_setup(sna, picture, channel, ox, oy))
return 0;
channel->u.gen3.type = SHADER_RADIAL;
op->u.gen3.num_constants = n;
return 1;
}
static Bool
gen3_composite_picture(struct sna *sna,
PicturePtr picture,
struct sna_composite_op *op,
struct sna_composite_channel *channel,
int16_t x, int16_t y,
int16_t w, int16_t h,
int16_t dst_x, int16_t dst_y)
{
PixmapPtr pixmap;
uint32_t color;
int16_t dx, dy;
DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n",
__FUNCTION__, x, y, w, h, dst_x, dst_y));
channel->card_format = 0;
if (picture->pDrawable == NULL) {
SourcePict *source = picture->pSourcePict;
int ret = 0;
switch (source->type) {
case SourcePictTypeSolidFill:
ret = gen3_init_solid(sna, channel,
source->solidFill.color);
break;
case SourcePictTypeLinear:
ret = gen3_init_linear(sna, picture, op, channel,
x - dst_x, y - dst_y);
break;
case SourcePictTypeRadial:
ret = gen3_init_radial(sna, picture, op, channel,
x - dst_x, y - dst_y);
break;
}
if (ret == 0)
ret = sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
return ret;
}
if (sna_picture_is_solid(picture, &color))
return gen3_init_solid(sna, channel, color);
if (!gen3_check_repeat(picture->repeat))
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
if (!gen3_check_filter(picture->filter))
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
channel->repeat = picture->repeat ? picture->repeatType : RepeatNone;
channel->filter = picture->filter;
channel->pict_format = picture->format;
pixmap = get_drawable_pixmap(picture->pDrawable);
get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy);
x += dx + picture->pDrawable->x;
y += dy + picture->pDrawable->y;
channel->is_affine = sna_transform_is_affine(picture->transform);
if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) {
DBG(("%s: integer translation (%d, %d), removing\n",
__FUNCTION__, dx, dy));
x += dx;
y += dy;
channel->transform = NULL;
channel->filter = PictFilterNearest;
} else
channel->transform = picture->transform;
if (!gen3_composite_channel_set_format(channel, picture->format) &&
!gen3_composite_channel_set_xformat(picture, channel, x, y, w, h))
return sna_render_picture_convert(sna, picture, channel, pixmap,
x, y, w, h, dst_x, dst_y);
if (pixmap->drawable.width > 2048 || pixmap->drawable.height > 2048)
return sna_render_picture_extract(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
return sna_render_pixmap_bo(sna, channel, pixmap,
x, y, w, h, dst_x, dst_y);
}
static inline Bool
picture_is_cpu(PicturePtr picture)
{
if (!picture->pDrawable)
return FALSE;
/* If it is a solid, try to use the render paths */
if (picture->pDrawable->width == 1 &&
picture->pDrawable->height == 1 &&
picture->repeat)
return FALSE;
return is_cpu(picture->pDrawable);
}
static Bool
try_blt(struct sna *sna,
PicturePtr dst,
PicturePtr source,
int width, int height)
{
if (sna->kgem.mode == KGEM_BLT) {
DBG(("%s: already performing BLT\n", __FUNCTION__));
return TRUE;
}
if (width > 2048 || height > 2048) {
DBG(("%s: operation too large for 3D pipe (%d, %d)\n",
__FUNCTION__, width, height));
return TRUE;
}
/* If we can sample directly from user-space, do so */
if (sna->kgem.has_vmap)
return FALSE;
/* is the source picture only in cpu memory e.g. a shm pixmap? */
return picture_is_cpu(source);
}
static void
gen3_align_vertex(struct sna *sna,
struct sna_composite_op *op)
{
if (op->floats_per_vertex != sna->render_state.gen3.last_floats_per_vertex) {
DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n",
sna->render_state.gen3.last_floats_per_vertex,
op->floats_per_vertex,
sna->render.vertex_index,
(sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex));
sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex;
sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex;
sna->render_state.gen3.last_floats_per_vertex = op->floats_per_vertex;
}
}
static Bool
gen3_composite_set_target(struct sna *sna,
struct sna_composite_op *op,
PicturePtr dst)
{
struct sna_pixmap *priv;
op->dst.pixmap = get_drawable_pixmap(dst->pDrawable);
op->dst.format = dst->format;
op->dst.width = op->dst.pixmap->drawable.width;
op->dst.height = op->dst.pixmap->drawable.height;
priv = sna_pixmap(op->dst.pixmap);
priv = sna_pixmap_force_to_gpu(op->dst.pixmap);
if (priv == NULL)
return FALSE;
op->dst.bo = priv->gpu_bo;
if (!priv->gpu_only &&
!sna_damage_is_all(&priv->gpu_damage, op->dst.width, op->dst.height))
op->damage = &priv->gpu_damage;
get_drawable_deltas(dst->pDrawable, op->dst.pixmap,
&op->dst.x, &op->dst.y);
DBG(("%s: pixmap=%p, format=%08x, size=%dx%d, pitch=%d, delta=(%d,%d)\n",
__FUNCTION__,
op->dst.pixmap, (int)op->dst.format,
op->dst.width, op->dst.height,
op->dst.bo->pitch,
op->dst.x, op->dst.y));
return TRUE;
}
static inline uint8_t mult(uint32_t s, uint32_t m, int shift)
{
s = (s >> shift) & 0xff;
m = (m >> shift) & 0xff;
return (s * m) >> 8;
}
static Bool
gen3_render_composite(struct sna *sna,
uint8_t op,
PicturePtr src,
PicturePtr mask,
PicturePtr dst,
int16_t src_x, int16_t src_y,
int16_t mask_x, int16_t mask_y,
int16_t dst_x, int16_t dst_y,
int16_t width, int16_t height,
struct sna_composite_op *tmp)
{
DBG(("%s()\n", __FUNCTION__));
#if NO_COMPOSITE
if (mask)
return FALSE;
return sna_blt_composite(sna, op,
src, dst,
src_x, src_y,
dst_x, dst_y,
width, height, tmp);
#endif
/* Try to use the BLT engine unless it implies a
* 3D -> 2D context switch.
*/
if (mask == NULL &&
try_blt(sna, dst, src, width, height) &&
sna_blt_composite(sna,
op, src, dst,
src_x, src_y,
dst_x, dst_y,
width, height,
tmp))
return TRUE;
if (op >= ARRAY_SIZE(gen3_blend_op)) {
DBG(("%s: fallback due to unhandled blend op: %d\n",
__FUNCTION__, op));
return FALSE;
}
if (!gen3_check_dst_format(dst->format)) {
DBG(("%s: fallback due to unhandled dst format: %x\n",
__FUNCTION__, dst->format));
return FALSE;
}
if (need_tiling(sna, width, height))
return sna_tiling_composite(sna,
op, src, mask, dst,
src_x, src_y,
mask_x, mask_y,
dst_x, dst_y,
width, height,
tmp);
memset(&tmp->u.gen3, 0, sizeof(tmp->u.gen3));
if (!gen3_composite_set_target(sna, tmp, dst)) {
DBG(("%s: unable to set render target\n",
__FUNCTION__));
return FALSE;
}
tmp->op = op;
tmp->rb_reversed = gen3_dst_rb_reversed(tmp->dst.format);
if (tmp->dst.width > 2048 || tmp->dst.height > 2048 ||
!gen3_check_pitch_3d(tmp->dst.bo)) {
if (!sna_render_composite_redirect(sna, tmp,
dst_x, dst_y, width, height))
return FALSE;
}
tmp->src.u.gen3.type = SHADER_TEXTURE;
tmp->src.is_affine = TRUE;
DBG(("%s: preparing source\n", __FUNCTION__));
switch (gen3_composite_picture(sna, src, tmp, &tmp->src,
src_x, src_y,
width, height,
dst_x, dst_y)) {
case -1:
goto cleanup_dst;
case 0:
tmp->src.u.gen3.type = SHADER_ZERO;
break;
case 1:
gen3_composite_channel_convert(&tmp->src);
break;
}
DBG(("%s: source type=%d\n", __FUNCTION__, tmp->src.u.gen3.type));
tmp->mask.u.gen3.type = SHADER_NONE;
tmp->mask.is_affine = TRUE;
tmp->need_magic_ca_pass = FALSE;
tmp->has_component_alpha = FALSE;
if (mask && tmp->src.u.gen3.type != SHADER_ZERO) {
tmp->mask.u.gen3.type = SHADER_TEXTURE;
DBG(("%s: preparing mask\n", __FUNCTION__));
switch (gen3_composite_picture(sna, mask, tmp, &tmp->mask,
mask_x, mask_y,
width, height,
dst_x, dst_y)) {
case -1:
goto cleanup_src;
case 0:
tmp->mask.u.gen3.type = SHADER_ZERO;
break;
case 1:
gen3_composite_channel_convert(&tmp->mask);
break;
}
DBG(("%s: mask type=%d\n", __FUNCTION__, tmp->mask.u.gen3.type));
if (tmp->mask.u.gen3.type == SHADER_ZERO) {
if (tmp->src.bo) {
kgem_bo_destroy(&sna->kgem,
tmp->src.bo);
tmp->src.bo = NULL;
}
tmp->src.u.gen3.type = SHADER_ZERO;
tmp->mask.u.gen3.type = SHADER_NONE;
}
if (tmp->mask.u.gen3.type != SHADER_NONE &&
mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) {
/* Check if it's component alpha that relies on a source alpha
* and on the source value. We can only get one of those
* into the single source value that we get to blend with.
*/
tmp->has_component_alpha = TRUE;
if (tmp->mask.u.gen3.type == SHADER_CONSTANT &&
tmp->mask.u.gen3.mode == 0xffffffff) {
tmp->mask.u.gen3.type = SHADER_NONE;
tmp->has_component_alpha = FALSE;
} else if (tmp->src.u.gen3.type == SHADER_CONSTANT &&
tmp->src.u.gen3.mode == 0xffffffff) {
tmp->src = tmp->mask;
tmp->mask.u.gen3.type = SHADER_NONE;
tmp->mask.bo = NULL;
tmp->has_component_alpha = FALSE;
} else if (tmp->src.u.gen3.type == SHADER_CONSTANT &&
tmp->mask.u.gen3.type == SHADER_CONSTANT) {
uint32_t a,r,g,b;
a = mult(tmp->src.u.gen3.mode,
tmp->mask.u.gen3.mode,
24);
r = mult(tmp->src.u.gen3.mode,
tmp->mask.u.gen3.mode,
16);
g = mult(tmp->src.u.gen3.mode,
tmp->mask.u.gen3.mode,
8);
b = mult(tmp->src.u.gen3.mode,
tmp->mask.u.gen3.mode,
0);
DBG(("%s: combining constant source/mask: %x x %x -> %x\n",
__FUNCTION__,
tmp->src.u.gen3.mode,
tmp->mask.u.gen3.mode,
a << 24 | r << 16 | g << 8 | b));
tmp->src.u.gen3.mode =
a << 24 | r << 16 | g << 8 | b;
tmp->mask.u.gen3.type = SHADER_NONE;
tmp->has_component_alpha = FALSE;
} else if (gen3_blend_op[op].src_alpha &&
(gen3_blend_op[op].src_blend != BLENDFACT_ZERO)) {
if (op != PictOpOver)
goto cleanup_mask;
tmp->need_magic_ca_pass = TRUE;
tmp->op = PictOpOutReverse;
sna->render.vertex_start = sna->render.vertex_index;
}
}
}
DBG(("%s: final src/mask type=%d/%d, affine=%d/%d\n", __FUNCTION__,
tmp->src.u.gen3.type, tmp->mask.u.gen3.type,
tmp->src.is_affine, tmp->mask.is_affine));
tmp->prim_emit = gen3_emit_composite_primitive;
if (tmp->mask.u.gen3.type == SHADER_NONE ||
tmp->mask.u.gen3.type == SHADER_CONSTANT) {
switch (tmp->src.u.gen3.type) {
case SHADER_NONE:
case SHADER_CONSTANT:
tmp->prim_emit = gen3_emit_composite_primitive_constant;
break;
case SHADER_LINEAR:
case SHADER_RADIAL:
if (tmp->src.transform == NULL)
tmp->prim_emit = gen3_emit_composite_primitive_identity_gradient;
else if (tmp->src.is_affine)
tmp->prim_emit = gen3_emit_composite_primitive_affine_gradient;
break;
case SHADER_TEXTURE:
if (tmp->src.transform == NULL)
tmp->prim_emit = gen3_emit_composite_primitive_identity_source;
else if (tmp->src.is_affine)
tmp->prim_emit = gen3_emit_composite_primitive_affine_source;
break;
}
} else if (tmp->mask.u.gen3.type == SHADER_TEXTURE) {
if (tmp->mask.transform == NULL) {
if (tmp->src.u.gen3.type == SHADER_CONSTANT)
tmp->prim_emit = gen3_emit_composite_primitive_constant_identity_mask;
else if (tmp->src.transform == NULL)
tmp->prim_emit = gen3_emit_composite_primitive_identity_source_mask;
else if (tmp->src.is_affine)
tmp->prim_emit = gen3_emit_composite_primitive_affine_source_mask;
}
}
tmp->floats_per_vertex = 2;
if (tmp->src.u.gen3.type != SHADER_CONSTANT &&
tmp->src.u.gen3.type != SHADER_ZERO)
tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 4;
if (tmp->mask.u.gen3.type != SHADER_NONE &&
tmp->mask.u.gen3.type != SHADER_CONSTANT)
tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 4;
DBG(("%s: floats_per_vertex = 2 + %d + %d = %d\n", __FUNCTION__,
(tmp->src.u.gen3.type != SHADER_CONSTANT &&
tmp->src.u.gen3.type != SHADER_ZERO) ?
tmp->src.is_affine ? 2 : 4 : 0,
(tmp->mask.u.gen3.type != SHADER_NONE &&
tmp->mask.u.gen3.type != SHADER_CONSTANT) ?
tmp->mask.is_affine ? 2 : 4 : 0,
tmp->floats_per_vertex));
tmp->blt = gen3_render_composite_blt;
tmp->boxes = gen3_render_composite_boxes;
tmp->done = gen3_render_composite_done;
if (!kgem_check_bo(&sna->kgem, tmp->dst.bo))
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, tmp->src.bo))
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, tmp->mask.bo))
kgem_submit(&sna->kgem);
if (kgem_bo_is_dirty(tmp->src.bo) || kgem_bo_is_dirty(tmp->mask.bo)) {
if (tmp->src.bo == tmp->dst.bo || tmp->mask.bo == tmp->dst.bo) {
kgem_emit_flush(&sna->kgem);
} else {
OUT_BATCH(_3DSTATE_MODES_5_CMD |
PIPELINE_FLUSH_RENDER_CACHE |
PIPELINE_FLUSH_TEXTURE_CACHE);
kgem_clear_dirty(&sna->kgem);
}
}
gen3_emit_composite_state(sna, tmp);
gen3_align_vertex(sna, tmp);
sna->render.op = tmp;
return TRUE;
cleanup_mask:
if (tmp->mask.bo)
kgem_bo_destroy(&sna->kgem, tmp->mask.bo);
cleanup_src:
if (tmp->src.bo)
kgem_bo_destroy(&sna->kgem, tmp->src.bo);
cleanup_dst:
if (tmp->redirect.real_bo)
kgem_bo_destroy(&sna->kgem, tmp->dst.bo);
return FALSE;
}
static void
gen3_emit_composite_spans_vertex(struct sna *sna,
const struct sna_composite_spans_op *op,
int16_t x, int16_t y,
float opacity)
{
gen3_emit_composite_dstcoord(sna, x + op->base.dst.x, y + op->base.dst.y);
gen3_emit_composite_texcoord(sna, &op->base.src, x, y);
OUT_VERTEX(opacity);
}
static void
gen3_emit_composite_spans_primitive_zero(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
float *v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 6;
v[0] = op->base.dst.x + box->x2;
v[1] = op->base.dst.y + box->y2;
v[2] = op->base.dst.x + box->x1;
v[3] = v[1];
v[4] = v[2];
v[5] = op->base.dst.x + box->y1;
}
static void
gen3_emit_composite_spans_primitive_constant(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
float *v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 9;
v[0] = op->base.dst.x + box->x2;
v[6] = v[3] = op->base.dst.x + box->x1;
v[4] = v[1] = op->base.dst.y + box->y2;
v[7] = op->base.dst.y + box->y1;
v[8] = v[5] = v[2] = opacity;
}
static void
gen3_emit_composite_spans_primitive_identity_source(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
float *v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 15;
v[0] = op->base.dst.x + box->x2;
v[1] = op->base.dst.y + box->y2;
v[2] = (op->base.src.offset[0] + box->x2) * op->base.src.scale[0];
v[3] = (op->base.src.offset[1] + box->y2) * op->base.src.scale[1];
v[4] = opacity;
v[5] = op->base.dst.x + box->x1;
v[6] = v[1];
v[7] = (op->base.src.offset[0] + box->x1) * op->base.src.scale[0];
v[8] = v[3];
v[9] = opacity;
v[10] = v[5];
v[11] = op->base.dst.y + box->y1;
v[12] = v[7];
v[13] = (op->base.src.offset[1] + box->y1) * op->base.src.scale[1];
v[14] = opacity;
}
static void
gen3_emit_composite_spans_primitive_affine_source(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
PictTransform *transform = op->base.src.transform;
float x, y, *v;
v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 15;
v[0] = op->base.dst.x + box->x2;
v[6] = v[1] = op->base.dst.y + box->y2;
v[10] = v[5] = op->base.dst.x + box->x1;
v[11] = op->base.dst.y + box->y1;
v[4] = opacity;
v[9] = opacity;
v[14] = opacity;
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x2,
(int)op->base.src.offset[1] + box->y2,
transform,
&x, &y);
v[2] = x * op->base.src.scale[0];
v[3] = y * op->base.src.scale[1];
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1,
(int)op->base.src.offset[1] + box->y2,
transform,
&x, &y);
v[7] = x * op->base.src.scale[0];
v[8] = y * op->base.src.scale[1];
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1,
(int)op->base.src.offset[1] + box->y1,
transform,
&x, &y);
v[12] = x * op->base.src.scale[0];
v[13] = y * op->base.src.scale[1];
}
static void
gen3_emit_composite_spans_primitive_identity_gradient(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
float *v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 15;
v[0] = op->base.dst.x + box->x2;
v[1] = op->base.dst.y + box->y2;
v[2] = op->base.src.offset[0] + box->x2;
v[3] = op->base.src.offset[1] + box->y2;
v[4] = opacity;
v[5] = op->base.dst.x + box->x1;
v[6] = v[1];
v[7] = op->base.src.offset[0] + box->x1;
v[8] = v[3];
v[9] = opacity;
v[10] = v[5];
v[11] = op->base.dst.y + box->y1;
v[12] = v[7];
v[13] = op->base.src.offset[1] + box->y1;
v[14] = opacity;
}
static void
gen3_emit_composite_spans_primitive_affine_gradient(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
PictTransform *transform = op->base.src.transform;
float *v = sna->render.vertex_data + sna->render.vertex_used;
sna->render.vertex_used += 15;
v[0] = op->base.dst.x + box->x2;
v[1] = op->base.dst.y + box->y2;
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x2,
(int)op->base.src.offset[1] + box->y2,
transform,
&v[2], &v[3]);
v[4] = opacity;
v[5] = op->base.dst.x + box->x1;
v[6] = v[1];
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1,
(int)op->base.src.offset[1] + box->y2,
transform,
&v[7], &v[8]);
v[9] = opacity;
v[10] = v[5];
v[11] = op->base.dst.y + box->y1;
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1,
(int)op->base.src.offset[1] + box->y1,
transform,
&v[12], &v[13]);
v[14] = opacity;
}
static void
gen3_emit_composite_spans_primitive(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
gen3_emit_composite_spans_vertex(sna, op,
box->x2, box->y2,
opacity);
gen3_emit_composite_spans_vertex(sna, op,
box->x1, box->y2,
opacity);
gen3_emit_composite_spans_vertex(sna, op,
box->x1, box->y1,
opacity);
}
static void
gen3_render_composite_spans_box(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box, float opacity)
{
DBG(("%s: src=+(%d, %d), opacity=%f, dst=+(%d, %d), box=(%d, %d) x (%d, %d)\n",
__FUNCTION__,
op->base.src.offset[0], op->base.src.offset[1],
opacity,
op->base.dst.x, op->base.dst.y,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
if (gen3_get_rectangles(sna, &op->base, 1) == 0) {
gen3_emit_composite_state(sna, &op->base);
gen3_get_rectangles(sna, &op->base, 1);
}
op->prim_emit(sna, op, box, opacity);
}
static void
gen3_render_composite_spans_boxes(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box, int nbox,
float opacity)
{
DBG(("%s: nbox=%d, src=+(%d, %d), opacity=%f, dst=+(%d, %d)\n",
__FUNCTION__, nbox,
op->base.src.offset[0], op->base.src.offset[1],
opacity,
op->base.dst.x, op->base.dst.y));
do {
int nbox_this_time;
nbox_this_time = gen3_get_rectangles(sna, &op->base, nbox);
if (nbox_this_time == 0) {
gen3_emit_composite_state(sna, &op->base);
nbox_this_time = gen3_get_rectangles(sna, &op->base, nbox);
}
nbox -= nbox_this_time;
do {
DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
op->prim_emit(sna, op, box++, opacity);
} while (--nbox_this_time);
} while (nbox);
}
static void
gen3_render_composite_spans_done(struct sna *sna,
const struct sna_composite_spans_op *op)
{
gen3_vertex_flush(sna);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
DBG(("%s()\n", __FUNCTION__));
sna_render_composite_redirect_done(sna, &op->base);
if (op->base.src.bo)
kgem_bo_destroy(&sna->kgem, op->base.src.bo);
}
static Bool
gen3_render_composite_spans(struct sna *sna,
uint8_t op,
PicturePtr src,
PicturePtr dst,
int16_t src_x, int16_t src_y,
int16_t dst_x, int16_t dst_y,
int16_t width, int16_t height,
struct sna_composite_spans_op *tmp)
{
DBG(("%s(src=(%d, %d), dst=(%d, %d), size=(%d, %d))\n", __FUNCTION__,
src_x, src_y, dst_x, dst_y, width, height));
#if NO_COMPOSITE_SPANS
return FALSE;
#endif
if (op >= ARRAY_SIZE(gen3_blend_op)) {
DBG(("%s: fallback due to unhandled blend op: %d\n",
__FUNCTION__, op));
return FALSE;
}
if (!gen3_check_dst_format(dst->format)) {
DBG(("%s: fallback due to unhandled dst format: %x\n",
__FUNCTION__, dst->format));
return FALSE;
}
if (need_tiling(sna, width, height))
return FALSE;
if (!gen3_composite_set_target(sna, &tmp->base, dst)) {
DBG(("%s: unable to set render target\n",
__FUNCTION__));
return FALSE;
}
tmp->base.op = op;
tmp->base.rb_reversed = gen3_dst_rb_reversed(tmp->base.dst.format);
if (tmp->base.dst.width > 2048 || tmp->base.dst.height > 2048 ||
!gen3_check_pitch_3d(tmp->base.dst.bo)) {
if (!sna_render_composite_redirect(sna, &tmp->base,
dst_x, dst_y, width, height))
return FALSE;
}
tmp->base.src.u.gen3.type = SHADER_TEXTURE;
tmp->base.src.is_affine = TRUE;
DBG(("%s: preparing source\n", __FUNCTION__));
switch (gen3_composite_picture(sna, src, &tmp->base, &tmp->base.src,
src_x, src_y,
width, height,
dst_x, dst_y)) {
case -1:
goto cleanup_dst;
case 0:
tmp->base.src.u.gen3.type = SHADER_ZERO;
break;
case 1:
gen3_composite_channel_convert(&tmp->base.src);
break;
}
DBG(("%s: source type=%d\n", __FUNCTION__, tmp->base.src.u.gen3.type));
if (tmp->base.src.u.gen3.type != SHADER_ZERO)
tmp->base.mask.u.gen3.type = SHADER_OPACITY;
tmp->prim_emit = gen3_emit_composite_spans_primitive;
switch (tmp->base.src.u.gen3.type) {
case SHADER_NONE:
assert(0);
case SHADER_ZERO:
tmp->prim_emit = gen3_emit_composite_spans_primitive_zero;
break;
case SHADER_CONSTANT:
tmp->prim_emit = gen3_emit_composite_spans_primitive_constant;
break;
case SHADER_LINEAR:
case SHADER_RADIAL:
if (tmp->base.src.transform == NULL)
tmp->prim_emit = gen3_emit_composite_spans_primitive_identity_gradient;
else if (tmp->base.src.is_affine)
tmp->prim_emit = gen3_emit_composite_spans_primitive_affine_gradient;
break;
case SHADER_TEXTURE:
if (tmp->base.src.transform == NULL)
tmp->prim_emit = gen3_emit_composite_spans_primitive_identity_source;
else if (tmp->base.src.is_affine)
tmp->prim_emit = gen3_emit_composite_spans_primitive_affine_source;
break;
}
tmp->base.floats_per_vertex = 2;
if (tmp->base.src.u.gen3.type != SHADER_CONSTANT &&
tmp->base.src.u.gen3.type != SHADER_ZERO)
tmp->base.floats_per_vertex += tmp->base.src.is_affine ? 2 : 3;
tmp->base.floats_per_vertex +=
tmp->base.mask.u.gen3.type == SHADER_OPACITY;
tmp->box = gen3_render_composite_spans_box;
tmp->boxes = gen3_render_composite_spans_boxes;
tmp->done = gen3_render_composite_spans_done;
if (!kgem_check_bo(&sna->kgem, tmp->base.dst.bo))
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, tmp->base.src.bo))
kgem_submit(&sna->kgem);
if (kgem_bo_is_dirty(tmp->base.src.bo)) {
if (tmp->base.src.bo == tmp->base.dst.bo) {
kgem_emit_flush(&sna->kgem);
} else {
OUT_BATCH(_3DSTATE_MODES_5_CMD |
PIPELINE_FLUSH_RENDER_CACHE |
PIPELINE_FLUSH_TEXTURE_CACHE);
kgem_clear_dirty(&sna->kgem);
}
}
gen3_emit_composite_state(sna, &tmp->base);
gen3_align_vertex(sna, &tmp->base);
return TRUE;
cleanup_dst:
if (tmp->base.redirect.real_bo)
kgem_bo_destroy(&sna->kgem, tmp->base.dst.bo);
return FALSE;
}
static void
gen3_emit_video_state(struct sna *sna,
struct sna_video *video,
struct sna_video_frame *frame,
PixmapPtr pixmap,
struct kgem_bo *dst_bo,
int width, int height)
{
uint32_t shader_offset;
uint32_t ms3, s5;
/* draw rect -- just clipping */
OUT_BATCH(_3DSTATE_DRAW_RECT_CMD);
OUT_BATCH(DRAW_DITHER_OFS_X(pixmap->drawable.x & 3) |
DRAW_DITHER_OFS_Y(pixmap->drawable.y & 3));
OUT_BATCH(0x00000000); /* ymin, xmin */
/* ymax, xmax */
OUT_BATCH((width - 1) | (height - 1) << 16);
OUT_BATCH(0x00000000); /* yorigin, xorigin */
OUT_BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
I1_LOAD_S(1) | I1_LOAD_S(2) | I1_LOAD_S(5) | I1_LOAD_S(6) |
3);
OUT_BATCH((4 << S1_VERTEX_WIDTH_SHIFT) | (4 << S1_VERTEX_PITCH_SHIFT));
OUT_BATCH(S2_TEXCOORD_FMT(0, TEXCOORDFMT_2D) |
S2_TEXCOORD_FMT(1, TEXCOORDFMT_NOT_PRESENT) |
S2_TEXCOORD_FMT(2, TEXCOORDFMT_NOT_PRESENT) |
S2_TEXCOORD_FMT(3, TEXCOORDFMT_NOT_PRESENT) |
S2_TEXCOORD_FMT(4, TEXCOORDFMT_NOT_PRESENT) |
S2_TEXCOORD_FMT(5, TEXCOORDFMT_NOT_PRESENT) |
S2_TEXCOORD_FMT(6, TEXCOORDFMT_NOT_PRESENT) |
S2_TEXCOORD_FMT(7, TEXCOORDFMT_NOT_PRESENT));
s5 = 0x0;
if (pixmap->drawable.depth < 24)
s5 |= S5_COLOR_DITHER_ENABLE;
OUT_BATCH(s5);
OUT_BATCH((2 << S6_DEPTH_TEST_FUNC_SHIFT) |
(2 << S6_CBUF_SRC_BLEND_FACT_SHIFT) |
(1 << S6_CBUF_DST_BLEND_FACT_SHIFT) |
S6_COLOR_WRITE_ENABLE | (2 << S6_TRISTRIP_PV_SHIFT));
OUT_BATCH(_3DSTATE_CONST_BLEND_COLOR_CMD);
OUT_BATCH(0x00000000);
OUT_BATCH(_3DSTATE_DST_BUF_VARS_CMD);
OUT_BATCH(gen3_get_dst_format(sna_format_for_depth(pixmap->drawable.depth)));
/* front buffer, pitch, offset */
OUT_BATCH(_3DSTATE_BUF_INFO_CMD);
OUT_BATCH(BUF_3D_ID_COLOR_BACK |
gen3_buf_tiling(dst_bo->tiling) |
dst_bo->pitch);
OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
dst_bo,
I915_GEM_DOMAIN_RENDER << 16 |
I915_GEM_DOMAIN_RENDER,
0));
if (!is_planar_fourcc(frame->id)) {
OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | 4);
OUT_BATCH(0x0000001); /* constant 0 */
/* constant 0: brightness/contrast */
OUT_BATCH_F(video->brightness / 128.0);
OUT_BATCH_F(video->contrast / 255.0);
OUT_BATCH_F(0.0);
OUT_BATCH_F(0.0);
OUT_BATCH(_3DSTATE_SAMPLER_STATE | 3);
OUT_BATCH(0x00000001);
OUT_BATCH(SS2_COLORSPACE_CONVERSION |
(FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) |
(FILTER_LINEAR << SS2_MIN_FILTER_SHIFT));
OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCX_ADDR_MODE_SHIFT) |
(TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCY_ADDR_MODE_SHIFT) |
(0 << SS3_TEXTUREMAP_INDEX_SHIFT) |
SS3_NORMALIZED_COORDS);
OUT_BATCH(0x00000000);
OUT_BATCH(_3DSTATE_MAP_STATE | 3);
OUT_BATCH(0x00000001); /* texture map #1 */
OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
frame->bo,
I915_GEM_DOMAIN_SAMPLER << 16,
0));
ms3 = MAPSURF_422;
switch (frame->id) {
case FOURCC_YUY2:
ms3 |= MT_422_YCRCB_NORMAL;
break;
case FOURCC_UYVY:
ms3 |= MT_422_YCRCB_SWAPY;
break;
}
ms3 |= (frame->height - 1) << MS3_HEIGHT_SHIFT;
ms3 |= (frame->width - 1) << MS3_WIDTH_SHIFT;
OUT_BATCH(ms3);
OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT);
shader_offset = sna->kgem.nbatch++;
gen3_fs_dcl(FS_S0);
gen3_fs_dcl(FS_T0);
gen3_fs_texld(FS_OC, FS_S0, FS_T0);
if (video->brightness != 0) {
gen3_fs_add(FS_OC,
gen3_fs_operand_reg(FS_OC),
gen3_fs_operand(FS_C0, X, X, X, ZERO));
}
} else {
/* For the planar formats, we set up three samplers --
* one for each plane, in a Y8 format. Because I
* couldn't get the special PLANAR_TO_PACKED
* shader setup to work, I did the manual pixel shader:
*
* y' = y - .0625
* u' = u - .5
* v' = v - .5;
*
* r = 1.1643 * y' + 0.0 * u' + 1.5958 * v'
* g = 1.1643 * y' - 0.39173 * u' - 0.81290 * v'
* b = 1.1643 * y' + 2.017 * u' + 0.0 * v'
*
* register assignment:
* r0 = (y',u',v',0)
* r1 = (y,y,y,y)
* r2 = (u,u,u,u)
* r3 = (v,v,v,v)
* OC = (r,g,b,1)
*/
OUT_BATCH(_3DSTATE_PIXEL_SHADER_CONSTANTS | (22 - 2));
OUT_BATCH(0x000001f); /* constants 0-4 */
/* constant 0: normalization offsets */
OUT_BATCH_F(-0.0625);
OUT_BATCH_F(-0.5);
OUT_BATCH_F(-0.5);
OUT_BATCH_F(0.0);
/* constant 1: r coefficients */
OUT_BATCH_F(1.1643);
OUT_BATCH_F(0.0);
OUT_BATCH_F(1.5958);
OUT_BATCH_F(0.0);
/* constant 2: g coefficients */
OUT_BATCH_F(1.1643);
OUT_BATCH_F(-0.39173);
OUT_BATCH_F(-0.81290);
OUT_BATCH_F(0.0);
/* constant 3: b coefficients */
OUT_BATCH_F(1.1643);
OUT_BATCH_F(2.017);
OUT_BATCH_F(0.0);
OUT_BATCH_F(0.0);
/* constant 4: brightness/contrast */
OUT_BATCH_F(video->brightness / 128.0);
OUT_BATCH_F(video->contrast / 255.0);
OUT_BATCH_F(0.0);
OUT_BATCH_F(0.0);
OUT_BATCH(_3DSTATE_SAMPLER_STATE | 9);
OUT_BATCH(0x00000007);
/* sampler 0 */
OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) |
(FILTER_LINEAR << SS2_MIN_FILTER_SHIFT));
OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCX_ADDR_MODE_SHIFT) |
(TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCY_ADDR_MODE_SHIFT) |
(0 << SS3_TEXTUREMAP_INDEX_SHIFT) |
SS3_NORMALIZED_COORDS);
OUT_BATCH(0x00000000);
/* sampler 1 */
OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) |
(FILTER_LINEAR << SS2_MIN_FILTER_SHIFT));
OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCX_ADDR_MODE_SHIFT) |
(TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCY_ADDR_MODE_SHIFT) |
(1 << SS3_TEXTUREMAP_INDEX_SHIFT) |
SS3_NORMALIZED_COORDS);
OUT_BATCH(0x00000000);
/* sampler 2 */
OUT_BATCH((FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) |
(FILTER_LINEAR << SS2_MIN_FILTER_SHIFT));
OUT_BATCH((TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCX_ADDR_MODE_SHIFT) |
(TEXCOORDMODE_CLAMP_EDGE <<
SS3_TCY_ADDR_MODE_SHIFT) |
(2 << SS3_TEXTUREMAP_INDEX_SHIFT) |
SS3_NORMALIZED_COORDS);
OUT_BATCH(0x00000000);
OUT_BATCH(_3DSTATE_MAP_STATE | 9);
OUT_BATCH(0x00000007);
OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
frame->bo,
I915_GEM_DOMAIN_SAMPLER << 16,
0));
ms3 = MAPSURF_8BIT | MT_8BIT_I8;
ms3 |= (frame->height - 1) << MS3_HEIGHT_SHIFT;
ms3 |= (frame->width - 1) << MS3_WIDTH_SHIFT;
OUT_BATCH(ms3);
/* check to see if Y has special pitch than normal
* double u/v pitch, e.g i915 XvMC hw requires at
* least 1K alignment, so Y pitch might
* be same as U/V's.*/
if (frame->pitch[1])
OUT_BATCH(((frame->pitch[1] / 4) - 1) << MS4_PITCH_SHIFT);
else
OUT_BATCH(((frame->pitch[0] * 2 / 4) - 1) << MS4_PITCH_SHIFT);
OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
frame->bo,
I915_GEM_DOMAIN_SAMPLER << 16,
frame->UBufOffset));
ms3 = MAPSURF_8BIT | MT_8BIT_I8;
ms3 |= (frame->height / 2 - 1) << MS3_HEIGHT_SHIFT;
ms3 |= (frame->width / 2 - 1) << MS3_WIDTH_SHIFT;
OUT_BATCH(ms3);
OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT);
OUT_BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
frame->bo,
I915_GEM_DOMAIN_SAMPLER << 16,
frame->VBufOffset));
ms3 = MAPSURF_8BIT | MT_8BIT_I8;
ms3 |= (frame->height / 2 - 1) << MS3_HEIGHT_SHIFT;
ms3 |= (frame->width / 2 - 1) << MS3_WIDTH_SHIFT;
OUT_BATCH(ms3);
OUT_BATCH(((frame->pitch[0] / 4) - 1) << MS4_PITCH_SHIFT);
shader_offset = sna->kgem.nbatch++;
/* Declare samplers */
gen3_fs_dcl(FS_S0); /* Y */
gen3_fs_dcl(FS_S1); /* U */
gen3_fs_dcl(FS_S2); /* V */
gen3_fs_dcl(FS_T0); /* normalized coords */
/* Load samplers to temporaries. */
gen3_fs_texld(FS_R1, FS_S0, FS_T0);
gen3_fs_texld(FS_R2, FS_S1, FS_T0);
gen3_fs_texld(FS_R3, FS_S2, FS_T0);
/* Move the sampled YUV data in R[123] to the first
* 3 channels of R0.
*/
gen3_fs_mov_masked(FS_R0, MASK_X,
gen3_fs_operand_reg(FS_R1));
gen3_fs_mov_masked(FS_R0, MASK_Y,
gen3_fs_operand_reg(FS_R2));
gen3_fs_mov_masked(FS_R0, MASK_Z,
gen3_fs_operand_reg(FS_R3));
/* Normalize the YUV data */
gen3_fs_add(FS_R0, gen3_fs_operand_reg(FS_R0),
gen3_fs_operand_reg(FS_C0));
/* dot-product the YUV data in R0 by the vectors of
* coefficients for calculating R, G, and B, storing
* the results in the R, G, or B channels of the output
* color. The OC results are implicitly clamped
* at the end of the program.
*/
gen3_fs_dp3(FS_OC, MASK_X,
gen3_fs_operand_reg(FS_R0),
gen3_fs_operand_reg(FS_C1));
gen3_fs_dp3(FS_OC, MASK_Y,
gen3_fs_operand_reg(FS_R0),
gen3_fs_operand_reg(FS_C2));
gen3_fs_dp3(FS_OC, MASK_Z,
gen3_fs_operand_reg(FS_R0),
gen3_fs_operand_reg(FS_C3));
/* Set alpha of the output to 1.0, by wiring W to 1
* and not actually using the source.
*/
gen3_fs_mov_masked(FS_OC, MASK_W,
gen3_fs_operand_one());
if (video->brightness != 0) {
gen3_fs_add(FS_OC,
gen3_fs_operand_reg(FS_OC),
gen3_fs_operand(FS_C4, X, X, X, ZERO));
}
}
sna->kgem.batch[shader_offset] =
_3DSTATE_PIXEL_SHADER_PROGRAM |
(sna->kgem.nbatch - shader_offset - 2);
/* video is the last operation in the batch, so state gets reset
* afterwards automatically
* gen3_reset();
*/
}
static void
gen3_video_get_batch(struct sna *sna)
{
if (!kgem_check_batch(&sna->kgem, 120)) {
DBG(("%s: flushing batch: nbatch %d < %d\n",
__FUNCTION__,
batch_space(sna), 120));
kgem_submit(&sna->kgem);
}
if (sna->kgem.nreloc + 4 > KGEM_RELOC_SIZE(&sna->kgem)) {
DBG(("%s: flushing batch: reloc %d >= %d\n",
__FUNCTION__,
sna->kgem.nreloc + 4,
(int)KGEM_RELOC_SIZE(&sna->kgem)));
kgem_submit(&sna->kgem);
}
if (sna->kgem.nexec + 2 > KGEM_EXEC_SIZE(&sna->kgem)) {
DBG(("%s: flushing batch: exec %d >= %d\n",
__FUNCTION__,
sna->kgem.nexec + 2,
(int)KGEM_EXEC_SIZE(&sna->kgem)));
kgem_submit(&sna->kgem);
}
if (sna->render_state.gen3.need_invariant)
gen3_emit_invariant(sna);
}
static int
gen3_get_inline_rectangles(struct sna *sna, int want, int floats_per_vertex)
{
int size = floats_per_vertex * 3;
int rem = batch_space(sna) - 1;
if (size * want > rem)
want = rem / size;
return want;
}
static Bool
gen3_render_video(struct sna *sna,
struct sna_video *video,
struct sna_video_frame *frame,
RegionPtr dstRegion,
short src_w, short src_h,
short drw_w, short drw_h,
PixmapPtr pixmap)
{
BoxPtr pbox = REGION_RECTS(dstRegion);
int nbox = REGION_NUM_RECTS(dstRegion);
int dxo = dstRegion->extents.x1;
int dyo = dstRegion->extents.y1;
int width = dstRegion->extents.x2 - dxo;
int height = dstRegion->extents.y2 - dyo;
float src_scale_x, src_scale_y;
int pix_xoff, pix_yoff;
struct kgem_bo *dst_bo;
int copy = 0;
DBG(("%s: %dx%d -> %dx%d\n", __FUNCTION__, src_w, src_h, drw_w, drw_h));
if (pixmap->drawable.width > 2048 ||
pixmap->drawable.height > 2048 ||
!gen3_check_pitch_3d(sna_pixmap_get_bo(pixmap))) {
int bpp = pixmap->drawable.bitsPerPixel;
dst_bo = kgem_create_2d(&sna->kgem,
width, height, bpp,
kgem_choose_tiling(&sna->kgem,
I915_TILING_X,
width, height, bpp),
0);
if (!dst_bo)
return FALSE;
pix_xoff = -dxo;
pix_yoff = -dyo;
copy = 1;
} else {
dst_bo = sna_pixmap_get_bo(pixmap);
width = pixmap->drawable.width;
height = pixmap->drawable.height;
/* Set up the offset for translating from the given region
* (in screen coordinates) to the backing pixmap.
*/
#ifdef COMPOSITE
pix_xoff = -pixmap->screen_x + pixmap->drawable.x;
pix_yoff = -pixmap->screen_y + pixmap->drawable.y;
#else
pix_xoff = 0;
pix_yoff = 0;
#endif
}
src_scale_x = ((float)src_w / frame->width) / drw_w;
src_scale_y = ((float)src_h / frame->height) / drw_h;
DBG(("%s: src offset=(%d, %d), scale=(%f, %f), dst offset=(%d, %d)\n",
__FUNCTION__,
dxo, dyo, src_scale_x, src_scale_y, pix_xoff, pix_yoff));
gen3_video_get_batch(sna);
gen3_emit_video_state(sna, video, frame, pixmap,
dst_bo, width, height);
do {
int nbox_this_time = gen3_get_inline_rectangles(sna, nbox, 4);
if (nbox_this_time == 0) {
gen3_video_get_batch(sna);
gen3_emit_video_state(sna, video, frame, pixmap,
dst_bo, width, height);
nbox_this_time = gen3_get_inline_rectangles(sna, nbox, 4);
}
nbox -= nbox_this_time;
OUT_BATCH(PRIM3D_RECTLIST | (12 * nbox_this_time - 1));
while (nbox_this_time--) {
int box_x1 = pbox->x1;
int box_y1 = pbox->y1;
int box_x2 = pbox->x2;
int box_y2 = pbox->y2;
pbox++;
DBG(("%s: box (%d, %d), (%d, %d)\n",
__FUNCTION__, box_x1, box_y1, box_x2, box_y2));
/* bottom right */
OUT_BATCH_F(box_x2 + pix_xoff);
OUT_BATCH_F(box_y2 + pix_yoff);
OUT_BATCH_F((box_x2 - dxo) * src_scale_x);
OUT_BATCH_F((box_y2 - dyo) * src_scale_y);
/* bottom left */
OUT_BATCH_F(box_x1 + pix_xoff);
OUT_BATCH_F(box_y2 + pix_yoff);
OUT_BATCH_F((box_x1 - dxo) * src_scale_x);
OUT_BATCH_F((box_y2 - dyo) * src_scale_y);
/* top left */
OUT_BATCH_F(box_x1 + pix_xoff);
OUT_BATCH_F(box_y1 + pix_yoff);
OUT_BATCH_F((box_x1 - dxo) * src_scale_x);
OUT_BATCH_F((box_y1 - dyo) * src_scale_y);
}
} while (nbox);
if (copy) {
#ifdef COMPOSITE
pix_xoff = -pixmap->screen_x + pixmap->drawable.x;
pix_yoff = -pixmap->screen_y + pixmap->drawable.y;
#else
pix_xoff = 0;
pix_yoff = 0;
#endif
sna_blt_copy_boxes(sna, GXcopy,
dst_bo, -dxo, -dyo,
sna_pixmap_get_bo(pixmap), pix_xoff, pix_yoff,
pixmap->drawable.bitsPerPixel,
REGION_RECTS(dstRegion),
REGION_NUM_RECTS(dstRegion));
kgem_bo_destroy(&sna->kgem, dst_bo);
}
return TRUE;
}
static void
gen3_render_copy_setup_source(struct sna *sna,
struct sna_composite_channel *channel,
PixmapPtr pixmap,
struct kgem_bo *bo)
{
channel->u.gen3.type = SHADER_TEXTURE;
channel->filter = gen3_filter(PictFilterNearest);
channel->repeat = gen3_texture_repeat(RepeatNone);
channel->width = pixmap->drawable.width;
channel->height = pixmap->drawable.height;
channel->scale[0] = 1./pixmap->drawable.width;
channel->scale[1] = 1./pixmap->drawable.height;
channel->offset[0] = 0;
channel->offset[1] = 0;
gen3_composite_channel_set_format(channel,
sna_format_for_depth(pixmap->drawable.depth));
channel->bo = bo;
channel->is_affine = 1;
}
static Bool
gen3_render_copy_boxes(struct sna *sna, uint8_t alu,
PixmapPtr src, struct kgem_bo *src_bo, int16_t src_dx, int16_t src_dy,
PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy,
const BoxRec *box, int n)
{
struct sna_composite_op tmp;
#if NO_COPY_BOXES
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return FALSE;
return sna_blt_copy_boxes(sna, alu,
src_bo, src_dx, src_dy,
dst_bo, dst_dx, dst_dy,
dst->drawable.bitsPerPixel,
box, n);
#endif
DBG(("%s (%d, %d)->(%d, %d) x %d\n",
__FUNCTION__, src_dx, src_dy, dst_dx, dst_dy, n));
if (sna_blt_compare_depth(&src->drawable, &dst->drawable) &&
sna_blt_copy_boxes(sna, alu,
src_bo, src_dx, src_dy,
dst_bo, dst_dx, dst_dy,
dst->drawable.bitsPerPixel,
box, n))
return TRUE;
if (!(alu == GXcopy || alu == GXclear) ||
src_bo == dst_bo || /* XXX handle overlap using 3D ? */
src_bo->pitch > 8192 ||
src->drawable.width > 2048 ||
src->drawable.height > 2048 ||
dst_bo->pitch > 8192 ||
dst->drawable.width > 2048 ||
dst->drawable.height > 2048) {
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return FALSE;
return sna_blt_copy_boxes(sna, alu,
src_bo, src_dx, src_dy,
dst_bo, dst_dx, dst_dy,
dst->drawable.bitsPerPixel,
box, n);
}
if (!kgem_check_bo(&sna->kgem, dst_bo))
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, src_bo))
kgem_submit(&sna->kgem);
if (kgem_bo_is_dirty(src_bo))
kgem_emit_flush(&sna->kgem);
memset(&tmp, 0, sizeof(tmp));
tmp.op = alu == GXcopy ? PictOpSrc : PictOpClear;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp.dst.bo = dst_bo;
gen3_render_copy_setup_source(sna, &tmp.src, src, src_bo);
tmp.floats_per_vertex = 4;
tmp.mask.u.gen3.type = SHADER_NONE;
gen3_emit_composite_state(sna, &tmp);
gen3_align_vertex(sna, &tmp);
do {
int n_this_time;
n_this_time = gen3_get_rectangles(sna, &tmp, n);
if (n_this_time == 0) {
gen3_emit_composite_state(sna, &tmp);
n_this_time = gen3_get_rectangles(sna, &tmp, n);
}
n -= n_this_time;
do {
DBG((" (%d, %d) -> (%d, %d) + (%d, %d)\n",
box->x1 + src_dx, box->y1 + src_dy,
box->x1 + dst_dx, box->y1 + dst_dy,
box->x2 - box->x1, box->y2 - box->y1));
OUT_VERTEX(box->x2 + dst_dx);
OUT_VERTEX(box->y2 + dst_dy);
OUT_VERTEX((box->x2 + src_dx) * tmp.src.scale[0]);
OUT_VERTEX((box->y2 + src_dy) * tmp.src.scale[1]);
OUT_VERTEX(box->x1 + dst_dx);
OUT_VERTEX(box->y2 + dst_dy);
OUT_VERTEX((box->x1 + src_dx) * tmp.src.scale[0]);
OUT_VERTEX((box->y2 + src_dy) * tmp.src.scale[1]);
OUT_VERTEX(box->x1 + dst_dx);
OUT_VERTEX(box->y1 + dst_dy);
OUT_VERTEX((box->x1 + src_dx) * tmp.src.scale[0]);
OUT_VERTEX((box->y1 + src_dy) * tmp.src.scale[1]);
box++;
} while (--n_this_time);
} while (n);
gen3_vertex_flush(sna);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
return TRUE;
}
static void
gen3_render_copy_blt(struct sna *sna,
const struct sna_copy_op *op,
int16_t sx, int16_t sy,
int16_t w, int16_t h,
int16_t dx, int16_t dy)
{
if (!gen3_get_rectangles(sna, &op->base, 1)) {
gen3_emit_composite_state(sna, &op->base);
gen3_get_rectangles(sna, &op->base, 1);
}
OUT_VERTEX(dx+w);
OUT_VERTEX(dy+h);
OUT_VERTEX((sx+w)*op->base.src.scale[0]);
OUT_VERTEX((sy+h)*op->base.src.scale[1]);
OUT_VERTEX(dx);
OUT_VERTEX(dy+h);
OUT_VERTEX(sx*op->base.src.scale[0]);
OUT_VERTEX((sy+h)*op->base.src.scale[1]);
OUT_VERTEX(dx);
OUT_VERTEX(dy);
OUT_VERTEX(sx*op->base.src.scale[0]);
OUT_VERTEX(sy*op->base.src.scale[1]);
}
static void
gen3_render_copy_done(struct sna *sna, const struct sna_copy_op *op)
{
gen3_vertex_flush(sna);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
static Bool
gen3_render_copy(struct sna *sna, uint8_t alu,
PixmapPtr src, struct kgem_bo *src_bo,
PixmapPtr dst, struct kgem_bo *dst_bo,
struct sna_copy_op *tmp)
{
#if NO_COPY
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return FALSE;
return sna_blt_copy(sna, alu,
src_bo, dst_bo,
dst->drawable.bitsPerPixel,
tmp);
#endif
/* Prefer to use the BLT */
if (sna->kgem.mode != KGEM_RENDER &&
sna_blt_compare_depth(&src->drawable, &dst->drawable) &&
sna_blt_copy(sna, alu,
src_bo, dst_bo,
dst->drawable.bitsPerPixel,
tmp))
return TRUE;
/* Must use the BLT if we can't RENDER... */
if (!(alu == GXcopy || alu == GXclear) ||
src->drawable.width > 2048 || src->drawable.height > 2048 ||
dst->drawable.width > 2048 || dst->drawable.height > 2048 ||
src_bo->pitch > 8192 || dst_bo->pitch > 8192) {
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return FALSE;
return sna_blt_copy(sna, alu, src_bo, dst_bo,
dst->drawable.bitsPerPixel,
tmp);
}
tmp->base.op = alu == GXcopy ? PictOpSrc : PictOpClear;
tmp->base.dst.pixmap = dst;
tmp->base.dst.width = dst->drawable.width;
tmp->base.dst.height = dst->drawable.height;
tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp->base.dst.bo = dst_bo;
gen3_render_copy_setup_source(sna, &tmp->base.src, src, src_bo);
tmp->base.floats_per_vertex = 4;
tmp->base.mask.u.gen3.type = SHADER_NONE;
if (!kgem_check_bo(&sna->kgem, dst_bo))
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, src_bo))
kgem_submit(&sna->kgem);
if (kgem_bo_is_dirty(src_bo))
kgem_emit_flush(&sna->kgem);
tmp->blt = gen3_render_copy_blt;
tmp->done = gen3_render_copy_done;
gen3_emit_composite_state(sna, &tmp->base);
gen3_align_vertex(sna, &tmp->base);
return TRUE;
}
static Bool
gen3_render_fill_boxes_try_blt(struct sna *sna,
CARD8 op, PictFormat format,
const xRenderColor *color,
PixmapPtr dst, struct kgem_bo *dst_bo,
const BoxRec *box, int n)
{
uint8_t alu = GXcopy;
uint32_t pixel;
if (!sna_get_pixel_from_rgba(&pixel,
color->red,
color->green,
color->blue,
color->alpha,
format))
return FALSE;
if (op == PictOpClear) {
alu = GXclear;
pixel = 0;
op = PictOpSrc;
}
if (op == PictOpOver) {
if ((pixel & 0xff000000) == 0xff000000)
op = PictOpSrc;
}
if (op != PictOpSrc)
return FALSE;
return sna_blt_fill_boxes(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
pixel, box, n);
}
static Bool
gen3_render_fill_boxes(struct sna *sna,
CARD8 op,
PictFormat format,
const xRenderColor *color,
PixmapPtr dst, struct kgem_bo *dst_bo,
const BoxRec *box, int n)
{
struct sna_composite_op tmp;
uint32_t pixel;
#if NO_FILL_BOXES
return gen3_render_fill_boxes_try_blt(sna, op, format, color,
dst, dst_bo,
box, n);
#endif
DBG(("%s (op=%d, format=%x, color=(%04x,%04x,%04x, %04x))\n",
__FUNCTION__, op, (int)format,
color->red, color->green, color->blue, color->alpha));
if (op >= ARRAY_SIZE(gen3_blend_op)) {
DBG(("%s: fallback due to unhandled blend op: %d\n",
__FUNCTION__, op));
return FALSE;
}
if (dst->drawable.width > 2048 ||
dst->drawable.height > 2048 ||
dst_bo->pitch > 8192 ||
!gen3_check_dst_format(format))
return gen3_render_fill_boxes_try_blt(sna, op, format, color,
dst, dst_bo,
box, n);
if (gen3_render_fill_boxes_try_blt(sna, op, format, color,
dst, dst_bo,
box, n))
return TRUE;
if (!sna_get_pixel_from_rgba(&pixel,
color->red,
color->green,
color->blue,
color->alpha,
PICT_a8r8g8b8))
return FALSE;
DBG(("%s: using shader for op=%d, format=%x, pixel=%x\n",
__FUNCTION__, op, (int)format, pixel));
if (pixel == 0)
op = PictOpClear;
memset(&tmp, 0, sizeof(tmp));
tmp.op = op;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.format = format;
tmp.dst.bo = dst_bo;
tmp.floats_per_vertex = 2;
tmp.src.u.gen3.type = op == PictOpClear ? SHADER_ZERO : SHADER_CONSTANT;
tmp.src.u.gen3.mode = pixel;
if (!kgem_check_bo(&sna->kgem, dst_bo))
kgem_submit(&sna->kgem);
gen3_emit_composite_state(sna, &tmp);
gen3_align_vertex(sna, &tmp);
do {
int n_this_time = gen3_get_rectangles(sna, &tmp, n);
if (n_this_time == 0) {
gen3_emit_composite_state(sna, &tmp);
n_this_time = gen3_get_rectangles(sna, &tmp, n);
}
n -= n_this_time;
do {
DBG((" (%d, %d), (%d, %d): %x\n",
box->x1, box->y1, box->x2, box->y2, pixel));
OUT_VERTEX(box->x2);
OUT_VERTEX(box->y2);
OUT_VERTEX(box->x1);
OUT_VERTEX(box->y2);
OUT_VERTEX(box->x1);
OUT_VERTEX(box->y1);
box++;
} while (--n_this_time);
} while (n);
gen3_vertex_flush(sna);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
return TRUE;
}
static void
gen3_render_fill_blt(struct sna *sna,
const struct sna_fill_op *op,
int16_t x, int16_t y, int16_t w, int16_t h)
{
if (!gen3_get_rectangles(sna, &op->base, 1)) {
gen3_emit_composite_state(sna, &op->base);
gen3_get_rectangles(sna, &op->base, 1);
}
OUT_VERTEX(x+w);
OUT_VERTEX(y+h);
OUT_VERTEX(x);
OUT_VERTEX(y+h);
OUT_VERTEX(x);
OUT_VERTEX(y);
}
static void
gen3_render_fill_done(struct sna *sna, const struct sna_fill_op *op)
{
gen3_vertex_flush(sna);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
static Bool
gen3_render_fill(struct sna *sna, uint8_t alu,
PixmapPtr dst, struct kgem_bo *dst_bo,
uint32_t color,
struct sna_fill_op *tmp)
{
#if NO_FILL
return sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
tmp);
#endif
/* Prefer to use the BLT if already engaged */
if (sna->kgem.mode != KGEM_RENDER &&
sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
tmp))
return TRUE;
/* Must use the BLT if we can't RENDER... */
if (!(alu == GXcopy || alu == GXclear) ||
dst->drawable.width > 2048 || dst->drawable.height > 2048 ||
dst_bo->pitch > 8192)
return sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
tmp);
if (alu == GXclear)
color = 0;
tmp->base.op = color == 0 ? PictOpClear : PictOpSrc;
tmp->base.dst.pixmap = dst;
tmp->base.dst.width = dst->drawable.width;
tmp->base.dst.height = dst->drawable.height;
tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp->base.dst.bo = dst_bo;
tmp->base.floats_per_vertex = 2;
tmp->base.src.u.gen3.type = SHADER_CONSTANT;
tmp->base.src.u.gen3.mode =
sna_rgba_for_color(color, dst->drawable.depth);
if (!kgem_check_bo(&sna->kgem, dst_bo))
kgem_submit(&sna->kgem);
tmp->blt = gen3_render_fill_blt;
tmp->done = gen3_render_fill_done;
gen3_emit_composite_state(sna, &tmp->base);
gen3_align_vertex(sna, &tmp->base);
return TRUE;
}
static void gen3_render_flush(struct sna *sna)
{
gen3_vertex_finish(sna, TRUE);
}
static void
gen3_render_fini(struct sna *sna)
{
}
Bool gen3_render_init(struct sna *sna)
{
struct sna_render *render = &sna->render;
render->composite = gen3_render_composite;
render->composite_spans = gen3_render_composite_spans;
render->video = gen3_render_video;
render->copy_boxes = gen3_render_copy_boxes;
render->copy = gen3_render_copy;
render->fill_boxes = gen3_render_fill_boxes;
render->fill = gen3_render_fill;
render->reset = gen3_render_reset;
render->flush = gen3_render_flush;
render->fini = gen3_render_fini;
render->max_3d_size = 2048;
return TRUE;
}