xf86-video-intel/src/sna/gen2_render.c

3231 lines
83 KiB
C

/*
* Copyright © 2006,2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Wang Zhenyu <zhenyu.z.wang@intel.com>
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sna.h"
#include "sna_reg.h"
#include "sna_render.h"
#include "sna_render_inline.h"
#include "gen2_render.h"
#define NO_COMPOSITE 0
#define NO_COMPOSITE_SPANS 0
#define NO_COPY 0
#define NO_COPY_BOXES 0
#define NO_FILL 0
#define NO_FILL_ONE 0
#define NO_FILL_BOXES 0
#define PREFER_BLT_FILL 1
#define PREFER_BLT_COPY 1
#define MAX_3D_SIZE 2048
#define MAX_3D_PITCH 8192
#define BATCH(v) batch_emit(sna, v)
#define BATCH_F(v) batch_emit_float(sna, v)
#define VERTEX(v) batch_emit_float(sna, v)
static const struct blendinfo {
bool dst_alpha;
bool src_alpha;
uint32_t src_blend;
uint32_t dst_blend;
} gen2_blend_op[] = {
/* Clear */
{0, 0, BLENDFACTOR_ZERO, BLENDFACTOR_ZERO},
/* Src */
{0, 0, BLENDFACTOR_ONE, BLENDFACTOR_ZERO},
/* Dst */
{0, 0, BLENDFACTOR_ZERO, BLENDFACTOR_ONE},
/* Over */
{0, 1, BLENDFACTOR_ONE, BLENDFACTOR_INV_SRC_ALPHA},
/* OverReverse */
{1, 0, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_ONE},
/* In */
{1, 0, BLENDFACTOR_DST_ALPHA, BLENDFACTOR_ZERO},
/* InReverse */
{0, 1, BLENDFACTOR_ZERO, BLENDFACTOR_SRC_ALPHA},
/* Out */
{1, 0, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_ZERO},
/* OutReverse */
{0, 1, BLENDFACTOR_ZERO, BLENDFACTOR_INV_SRC_ALPHA},
/* Atop */
{1, 1, BLENDFACTOR_DST_ALPHA, BLENDFACTOR_INV_SRC_ALPHA},
/* AtopReverse */
{1, 1, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_SRC_ALPHA},
/* Xor */
{1, 1, BLENDFACTOR_INV_DST_ALPHA, BLENDFACTOR_INV_SRC_ALPHA},
/* Add */
{0, 0, BLENDFACTOR_ONE, BLENDFACTOR_ONE},
};
static const struct formatinfo {
unsigned int fmt;
uint32_t card_fmt;
} i8xx_tex_formats[] = {
{PICT_a8, MAPSURF_8BIT | MT_8BIT_A8},
{PICT_a8r8g8b8, MAPSURF_32BIT | MT_32BIT_ARGB8888},
{PICT_a8b8g8r8, MAPSURF_32BIT | MT_32BIT_ABGR8888},
{PICT_r5g6b5, MAPSURF_16BIT | MT_16BIT_RGB565},
{PICT_a1r5g5b5, MAPSURF_16BIT | MT_16BIT_ARGB1555},
{PICT_a4r4g4b4, MAPSURF_16BIT | MT_16BIT_ARGB4444},
}, i85x_tex_formats[] = {
{PICT_x8r8g8b8, MAPSURF_32BIT | MT_32BIT_XRGB8888},
{PICT_x8b8g8r8, MAPSURF_32BIT | MT_32BIT_XBGR8888},
};
static inline bool
too_large(int width, int height)
{
return width > MAX_3D_SIZE || height > MAX_3D_SIZE;
}
static inline uint32_t
gen2_buf_tiling(uint32_t tiling)
{
uint32_t v = 0;
switch (tiling) {
default: assert(0);
case I915_TILING_Y: v |= BUF_3D_TILE_WALK_Y;
case I915_TILING_X: v |= BUF_3D_TILED_SURFACE;
case I915_TILING_NONE: break;
}
return v;
}
static uint32_t
gen2_get_dst_format(uint32_t format)
{
#define BIAS DSTORG_HORT_BIAS(0x8) | DSTORG_VERT_BIAS(0x8)
switch (format) {
default:
assert(0);
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
return COLR_BUF_ARGB8888 | BIAS;
case PICT_r5g6b5:
return COLR_BUF_RGB565 | BIAS;
case PICT_a1r5g5b5:
case PICT_x1r5g5b5:
return COLR_BUF_ARGB1555 | BIAS;
case PICT_a8:
return COLR_BUF_8BIT | BIAS;
case PICT_a4r4g4b4:
case PICT_x4r4g4b4:
return COLR_BUF_ARGB4444 | BIAS;
}
#undef BIAS
}
static bool
gen2_check_dst_format(uint32_t format)
{
switch (format) {
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
case PICT_r5g6b5:
case PICT_a1r5g5b5:
case PICT_x1r5g5b5:
case PICT_a8:
case PICT_a4r4g4b4:
case PICT_x4r4g4b4:
return true;
default:
return false;
}
}
static uint32_t
gen2_get_card_format(struct sna *sna, uint32_t format)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(i8xx_tex_formats); i++)
if (i8xx_tex_formats[i].fmt == format)
return i8xx_tex_formats[i].card_fmt;
if (sna->kgem.gen < 021) {
/* Whilst these are not directly supported on 830/845,
* we only enable them when we can implicitly convert
* them to a supported variant through the texture
* combiners.
*/
for (i = 0; i < ARRAY_SIZE(i85x_tex_formats); i++)
if (i85x_tex_formats[i].fmt == format)
return i8xx_tex_formats[1+i].card_fmt;
} else {
for (i = 0; i < ARRAY_SIZE(i85x_tex_formats); i++)
if (i85x_tex_formats[i].fmt == format)
return i85x_tex_formats[i].card_fmt;
}
assert(0);
return 0;
}
static uint32_t
gen2_check_format(struct sna *sna, PicturePtr p)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(i8xx_tex_formats); i++)
if (i8xx_tex_formats[i].fmt == p->format)
return true;
if (sna->kgem.gen > 021) {
for (i = 0; i < ARRAY_SIZE(i85x_tex_formats); i++)
if (i85x_tex_formats[i].fmt == p->format)
return true;
}
return false;
}
static uint32_t
gen2_sampler_tiling_bits(uint32_t tiling)
{
uint32_t bits = 0;
switch (tiling) {
default:
assert(0);
case I915_TILING_Y:
bits |= TM0S1_TILE_WALK;
case I915_TILING_X:
bits |= TM0S1_TILED_SURFACE;
case I915_TILING_NONE:
break;
}
return bits;
}
static bool
gen2_check_filter(PicturePtr picture)
{
switch (picture->filter) {
case PictFilterNearest:
case PictFilterBilinear:
return true;
default:
return false;
}
}
static bool
gen2_check_repeat(PicturePtr picture)
{
if (!picture->repeat)
return true;
switch (picture->repeatType) {
case RepeatNone:
case RepeatNormal:
case RepeatPad:
case RepeatReflect:
return true;
default:
return false;
}
}
static void
gen2_emit_texture(struct sna *sna,
const struct sna_composite_channel *channel,
int unit)
{
uint32_t wrap_mode_u, wrap_mode_v;
uint32_t texcoordtype;
uint32_t filter;
if (channel->is_affine)
texcoordtype = TEXCOORDTYPE_CARTESIAN;
else
texcoordtype = TEXCOORDTYPE_HOMOGENEOUS;
switch (channel->repeat) {
default:
assert(0);
case RepeatNone:
wrap_mode_u = TEXCOORDMODE_CLAMP_BORDER;
break;
case RepeatNormal:
wrap_mode_u = TEXCOORDMODE_WRAP;
break;
case RepeatPad:
wrap_mode_u = TEXCOORDMODE_CLAMP;
break;
case RepeatReflect:
wrap_mode_u = TEXCOORDMODE_MIRROR;
break;
}
if (channel->is_linear)
wrap_mode_v = TEXCOORDMODE_WRAP;
else
wrap_mode_v = wrap_mode_u;
switch (channel->filter) {
default:
assert(0);
case PictFilterNearest:
filter = (FILTER_NEAREST << TM0S3_MAG_FILTER_SHIFT |
FILTER_NEAREST << TM0S3_MIN_FILTER_SHIFT |
MIPFILTER_NONE << TM0S3_MIP_FILTER_SHIFT);
break;
case PictFilterBilinear:
filter = (FILTER_LINEAR << TM0S3_MAG_FILTER_SHIFT |
FILTER_LINEAR << TM0S3_MIN_FILTER_SHIFT |
MIPFILTER_NONE << TM0S3_MIP_FILTER_SHIFT);
break;
}
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_2 | LOAD_TEXTURE_MAP(unit) | 4);
BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
channel->bo,
I915_GEM_DOMAIN_SAMPLER << 16,
0));
BATCH(((channel->height - 1) << TM0S1_HEIGHT_SHIFT) |
((channel->width - 1) << TM0S1_WIDTH_SHIFT) |
gen2_get_card_format(sna, channel->pict_format) |
gen2_sampler_tiling_bits(channel->bo->tiling));
BATCH((channel->bo->pitch / 4 - 1) << TM0S2_PITCH_SHIFT | TM0S2_MAP_2D);
BATCH(filter);
BATCH(0); /* default color */
BATCH(_3DSTATE_MAP_COORD_SET_CMD | TEXCOORD_SET(unit) |
ENABLE_TEXCOORD_PARAMS | TEXCOORDS_ARE_NORMAL | texcoordtype |
ENABLE_ADDR_V_CNTL | TEXCOORD_ADDR_V_MODE(wrap_mode_v) |
ENABLE_ADDR_U_CNTL | TEXCOORD_ADDR_U_MODE(wrap_mode_u));
}
static void
gen2_get_blend_factors(const struct sna_composite_op *op,
int blend,
uint32_t *c_out,
uint32_t *a_out)
{
uint32_t cblend, ablend;
/* If component alpha is active in the mask and the blend operation
* uses the source alpha, then we know we don't need the source
* value (otherwise we would have hit a fallback earlier), so we
* provide the source alpha (src.A * mask.X) as output color.
* Conversely, if CA is set and we don't need the source alpha, then
* we produce the source value (src.X * mask.X) and the source alpha
* is unused.. Otherwise, we provide the non-CA source value
* (src.X * mask.A).
*
* The PICT_FORMAT_RGB(pict) == 0 fixups are not needed on 855+'s a8
* pictures, but we need to implement it for 830/845 and there's no
* harm done in leaving it in.
*/
cblend = TB0C_LAST_STAGE | TB0C_RESULT_SCALE_1X | TB0C_OUTPUT_WRITE_CURRENT;
ablend = TB0A_RESULT_SCALE_1X | TB0A_OUTPUT_WRITE_CURRENT;
/* Get the source picture's channels into TBx_ARG1 */
if ((op->has_component_alpha && gen2_blend_op[blend].src_alpha) ||
op->dst.format == PICT_a8) {
/* Producing source alpha value, so the first set of channels
* is src.A instead of src.X. We also do this if the destination
* is a8, in which case src.G is what's written, and the other
* channels are ignored.
*/
if (op->src.is_solid) {
ablend |= TB0A_ARG1_SEL_DIFFUSE;
cblend |= TB0C_ARG1_SEL_DIFFUSE | TB0C_ARG1_REPLICATE_ALPHA;
} else {
ablend |= TB0A_ARG1_SEL_TEXEL0;
cblend |= TB0C_ARG1_SEL_TEXEL0 | TB0C_ARG1_REPLICATE_ALPHA;
}
} else {
if (op->src.is_solid)
cblend |= TB0C_ARG1_SEL_DIFFUSE;
else if (PICT_FORMAT_RGB(op->src.pict_format) != 0)
cblend |= TB0C_ARG1_SEL_TEXEL0;
else
cblend |= TB0C_ARG1_SEL_ONE | TB0C_ARG1_INVERT; /* 0.0 */
if (op->src.is_solid)
ablend |= TB0A_ARG1_SEL_DIFFUSE;
else if (op->src.is_opaque)
ablend |= TB0A_ARG1_SEL_ONE;
else
ablend |= TB0A_ARG1_SEL_TEXEL0;
}
if (op->mask.bo) {
if (op->src.is_solid) {
cblend |= TB0C_ARG2_SEL_TEXEL0;
ablend |= TB0A_ARG2_SEL_TEXEL0;
} else {
cblend |= TB0C_ARG2_SEL_TEXEL1;
ablend |= TB0A_ARG2_SEL_TEXEL1;
}
if (op->dst.format == PICT_a8 || !op->has_component_alpha)
cblend |= TB0C_ARG2_REPLICATE_ALPHA;
cblend |= TB0C_OP_MODULATE;
ablend |= TB0A_OP_MODULATE;
} else {
cblend |= TB0C_OP_ARG1;
ablend |= TB0A_OP_ARG1;
}
*c_out = cblend;
*a_out = ablend;
}
static uint32_t gen2_get_blend_cntl(int op,
bool has_component_alpha,
uint32_t dst_format)
{
uint32_t sblend, dblend;
if (op <= PictOpSrc)
return S8_ENABLE_COLOR_BUFFER_WRITE;
sblend = gen2_blend_op[op].src_blend;
dblend = gen2_blend_op[op].dst_blend;
/* If there's no dst alpha channel, adjust the blend op so that
* we'll treat it as always 1.
*/
if (PICT_FORMAT_A(dst_format) == 0 && gen2_blend_op[op].dst_alpha) {
if (sblend == BLENDFACTOR_DST_ALPHA)
sblend = BLENDFACTOR_ONE;
else if (sblend == BLENDFACTOR_INV_DST_ALPHA)
sblend = BLENDFACTOR_ZERO;
}
/* If the source alpha is being used, then we should only be in a case
* where the source blend factor is 0, and the source blend value is
* the mask channels multiplied by the source picture's alpha.
*/
if (has_component_alpha && gen2_blend_op[op].src_alpha) {
if (dblend == BLENDFACTOR_SRC_ALPHA)
dblend = BLENDFACTOR_SRC_COLR;
else if (dblend == BLENDFACTOR_INV_SRC_ALPHA)
dblend = BLENDFACTOR_INV_SRC_COLR;
}
return (sblend << S8_SRC_BLEND_FACTOR_SHIFT |
dblend << S8_DST_BLEND_FACTOR_SHIFT |
S8_ENABLE_COLOR_BLEND | S8_BLENDFUNC_ADD |
S8_ENABLE_COLOR_BUFFER_WRITE);
}
static void gen2_emit_invariant(struct sna *sna)
{
int i;
for (i = 0; i < 4; i++) {
BATCH(_3DSTATE_MAP_CUBE | MAP_UNIT(i));
BATCH(_3DSTATE_MAP_TEX_STREAM_CMD | MAP_UNIT(i) |
DISABLE_TEX_STREAM_BUMP |
ENABLE_TEX_STREAM_COORD_SET | TEX_STREAM_COORD_SET(i) |
ENABLE_TEX_STREAM_MAP_IDX | TEX_STREAM_MAP_IDX(i));
BATCH(_3DSTATE_MAP_COORD_TRANSFORM);
BATCH(DISABLE_TEX_TRANSFORM | TEXTURE_SET(i));
}
BATCH(_3DSTATE_MAP_COORD_SETBIND_CMD);
BATCH(TEXBIND_SET3(TEXCOORDSRC_VTXSET_3) |
TEXBIND_SET2(TEXCOORDSRC_VTXSET_2) |
TEXBIND_SET1(TEXCOORDSRC_VTXSET_1) |
TEXBIND_SET0(TEXCOORDSRC_VTXSET_0));
BATCH(_3DSTATE_SCISSOR_ENABLE_CMD | DISABLE_SCISSOR_RECT);
BATCH(_3DSTATE_VERTEX_TRANSFORM);
BATCH(DISABLE_VIEWPORT_TRANSFORM | DISABLE_PERSPECTIVE_DIVIDE);
BATCH(_3DSTATE_W_STATE_CMD);
BATCH(MAGIC_W_STATE_DWORD1);
BATCH_F(1.0);
BATCH(_3DSTATE_INDPT_ALPHA_BLEND_CMD |
DISABLE_INDPT_ALPHA_BLEND |
ENABLE_ALPHA_BLENDFUNC | ABLENDFUNC_ADD);
BATCH(_3DSTATE_CONST_BLEND_COLOR_CMD);
BATCH(0);
BATCH(_3DSTATE_MODES_1_CMD |
ENABLE_COLR_BLND_FUNC | BLENDFUNC_ADD |
ENABLE_SRC_BLND_FACTOR | SRC_BLND_FACT(BLENDFACTOR_ONE) |
ENABLE_DST_BLND_FACTOR | DST_BLND_FACT(BLENDFACTOR_ZERO));
BATCH(_3DSTATE_ENABLES_1_CMD |
DISABLE_LOGIC_OP |
DISABLE_STENCIL_TEST |
DISABLE_DEPTH_BIAS |
DISABLE_SPEC_ADD |
DISABLE_FOG |
DISABLE_ALPHA_TEST |
DISABLE_DEPTH_TEST |
ENABLE_COLOR_BLEND);
BATCH(_3DSTATE_ENABLES_2_CMD |
DISABLE_STENCIL_WRITE |
DISABLE_DITHER |
DISABLE_DEPTH_WRITE |
ENABLE_COLOR_MASK |
ENABLE_COLOR_WRITE |
ENABLE_TEX_CACHE);
BATCH(_3DSTATE_STIPPLE);
BATCH(_3DSTATE_MAP_BLEND_OP_CMD(0) |
TEXPIPE_COLOR |
ENABLE_TEXOUTPUT_WRT_SEL |
TEXOP_OUTPUT_CURRENT |
DISABLE_TEX_CNTRL_STAGE |
TEXOP_SCALE_1X |
TEXOP_MODIFY_PARMS | TEXOP_LAST_STAGE |
TEXBLENDOP_ARG1);
BATCH(_3DSTATE_MAP_BLEND_OP_CMD(0) |
TEXPIPE_ALPHA |
ENABLE_TEXOUTPUT_WRT_SEL |
TEXOP_OUTPUT_CURRENT |
TEXOP_SCALE_1X | TEXOP_MODIFY_PARMS |
TEXBLENDOP_ARG1);
BATCH(_3DSTATE_MAP_BLEND_ARG_CMD(0) |
TEXPIPE_COLOR |
TEXBLEND_ARG1 |
TEXBLENDARG_MODIFY_PARMS |
TEXBLENDARG_DIFFUSE);
BATCH(_3DSTATE_MAP_BLEND_ARG_CMD(0) |
TEXPIPE_ALPHA |
TEXBLEND_ARG1 |
TEXBLENDARG_MODIFY_PARMS |
TEXBLENDARG_DIFFUSE);
#define INVARIANT_SIZE 35
sna->render_state.gen2.need_invariant = false;
}
static void
gen2_get_batch(struct sna *sna, const struct sna_composite_op *op)
{
kgem_set_mode(&sna->kgem, KGEM_RENDER, op->dst.bo);
if (!kgem_check_batch(&sna->kgem, INVARIANT_SIZE+40)) {
DBG(("%s: flushing batch: size %d > %d\n",
__FUNCTION__, INVARIANT_SIZE+40,
sna->kgem.surface-sna->kgem.nbatch));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (!kgem_check_reloc(&sna->kgem, 3)) {
DBG(("%s: flushing batch: reloc %d >= %d\n",
__FUNCTION__,
sna->kgem.nreloc + 3,
(int)KGEM_RELOC_SIZE(&sna->kgem)));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (!kgem_check_exec(&sna->kgem, 3)) {
DBG(("%s: flushing batch: exec %d >= %d\n",
__FUNCTION__,
sna->kgem.nexec + 1,
(int)KGEM_EXEC_SIZE(&sna->kgem)));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (sna->render_state.gen2.need_invariant)
gen2_emit_invariant(sna);
}
static void gen2_emit_target(struct sna *sna, const struct sna_composite_op *op)
{
assert(!too_large(op->dst.width, op->dst.height));
assert(op->dst.bo->pitch >= 8 && op->dst.bo->pitch <= MAX_3D_PITCH);
assert(sna->render_state.gen2.vertex_offset == 0);
if (sna->render_state.gen2.target == op->dst.bo->unique_id) {
kgem_bo_mark_dirty(op->dst.bo);
return;
}
BATCH(_3DSTATE_BUF_INFO_CMD);
BATCH(BUF_3D_ID_COLOR_BACK |
gen2_buf_tiling(op->dst.bo->tiling) |
BUF_3D_PITCH(op->dst.bo->pitch));
BATCH(kgem_add_reloc(&sna->kgem, sna->kgem.nbatch,
op->dst.bo,
I915_GEM_DOMAIN_RENDER << 16 |
I915_GEM_DOMAIN_RENDER,
0));
BATCH(_3DSTATE_DST_BUF_VARS_CMD);
BATCH(gen2_get_dst_format(op->dst.format));
BATCH(_3DSTATE_DRAW_RECT_CMD);
BATCH(0);
BATCH(0); /* ymin, xmin */
BATCH(DRAW_YMAX(op->dst.height - 1) |
DRAW_XMAX(op->dst.width - 1));
BATCH(0); /* yorig, xorig */
sna->render_state.gen2.target = op->dst.bo->unique_id;
}
static void gen2_disable_logic_op(struct sna *sna)
{
if (!sna->render_state.gen2.logic_op_enabled)
return;
DBG(("%s\n", __FUNCTION__));
BATCH(_3DSTATE_ENABLES_1_CMD |
DISABLE_LOGIC_OP | ENABLE_COLOR_BLEND);
sna->render_state.gen2.logic_op_enabled = 0;
}
static void gen2_enable_logic_op(struct sna *sna, int op)
{
static const uint8_t logic_op[] = {
LOGICOP_CLEAR, /* GXclear */
LOGICOP_AND, /* GXand */
LOGICOP_AND_RVRSE, /* GXandReverse */
LOGICOP_COPY, /* GXcopy */
LOGICOP_AND_INV, /* GXandInverted */
LOGICOP_NOOP, /* GXnoop */
LOGICOP_XOR, /* GXxor */
LOGICOP_OR, /* GXor */
LOGICOP_NOR, /* GXnor */
LOGICOP_EQUIV, /* GXequiv */
LOGICOP_INV, /* GXinvert */
LOGICOP_OR_RVRSE, /* GXorReverse */
LOGICOP_COPY_INV, /* GXcopyInverted */
LOGICOP_OR_INV, /* GXorInverted */
LOGICOP_NAND, /* GXnand */
LOGICOP_SET /* GXset */
};
if (sna->render_state.gen2.logic_op_enabled != op+1) {
if (!sna->render_state.gen2.logic_op_enabled) {
if (op == GXclear || op == GXcopy)
return;
DBG(("%s\n", __FUNCTION__));
BATCH(_3DSTATE_ENABLES_1_CMD |
ENABLE_LOGIC_OP | DISABLE_COLOR_BLEND);
}
BATCH(_3DSTATE_MODES_4_CMD |
ENABLE_LOGIC_OP_FUNC | LOGIC_OP_FUNC(logic_op[op]));
sna->render_state.gen2.logic_op_enabled = op+1;
}
}
static void gen2_emit_composite_state(struct sna *sna,
const struct sna_composite_op *op)
{
uint32_t texcoordfmt, v, unwind;
uint32_t cblend, ablend;
int tex;
gen2_get_batch(sna, op);
if (kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo)) {
if (op->src.bo == op->dst.bo || op->mask.bo == op->dst.bo)
BATCH(MI_FLUSH | MI_INVALIDATE_MAP_CACHE);
else
BATCH(_3DSTATE_MODES_5_CMD |
PIPELINE_FLUSH_RENDER_CACHE |
PIPELINE_FLUSH_TEXTURE_CACHE);
kgem_clear_dirty(&sna->kgem);
}
gen2_emit_target(sna, op);
unwind = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
I1_LOAD_S(2) | I1_LOAD_S(3) | I1_LOAD_S(8) | 2);
BATCH((!op->src.is_solid + (op->mask.bo != NULL)) << 12);
BATCH(S3_CULLMODE_NONE | S3_VERTEXHAS_XY);
BATCH(gen2_get_blend_cntl(op->op,
op->has_component_alpha,
op->dst.format));
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls1 + 1,
sna->kgem.batch + unwind + 1,
3 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = unwind;
else
sna->render_state.gen2.ls1 = unwind;
gen2_disable_logic_op(sna);
gen2_get_blend_factors(op, op->op, &cblend, &ablend);
unwind = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
LOAD_TEXTURE_BLEND_STAGE(0) | 1);
BATCH(cblend);
BATCH(ablend);
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls2 + 1,
sna->kgem.batch + unwind + 1,
2 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = unwind;
else
sna->render_state.gen2.ls2 = unwind;
tex = texcoordfmt = 0;
if (!op->src.is_solid) {
if (op->src.is_affine)
texcoordfmt |= TEXCOORDFMT_2D << (2*tex);
else
texcoordfmt |= TEXCOORDFMT_3D << (2*tex);
gen2_emit_texture(sna, &op->src, tex++);
} else {
if (op->src.u.gen2.pixel != sna->render_state.gen2.diffuse) {
BATCH(_3DSTATE_DFLT_DIFFUSE_CMD);
BATCH(op->src.u.gen2.pixel);
sna->render_state.gen2.diffuse = op->src.u.gen2.pixel;
}
}
if (op->mask.bo) {
if (op->mask.is_affine)
texcoordfmt |= TEXCOORDFMT_2D << (2*tex);
else
texcoordfmt |= TEXCOORDFMT_3D << (2*tex);
gen2_emit_texture(sna, &op->mask, tex++);
}
v = _3DSTATE_VERTEX_FORMAT_2_CMD | texcoordfmt;
if (sna->render_state.gen2.vft != v) {
BATCH(v);
sna->render_state.gen2.vft = v;
}
}
static inline void
gen2_emit_composite_dstcoord(struct sna *sna, int dstX, int dstY)
{
VERTEX(dstX);
VERTEX(dstY);
}
inline static void
gen2_emit_composite_linear(struct sna *sna,
const struct sna_composite_channel *channel,
int16_t x, int16_t y)
{
float v;
v = (x * channel->u.gen2.linear_dx +
y * channel->u.gen2.linear_dy +
channel->u.gen2.linear_offset);
DBG(("%s: (%d, %d) -> %f\n", __FUNCTION__, x, y, v));
VERTEX(v);
VERTEX(v);
}
static void
gen2_emit_composite_texcoord(struct sna *sna,
const struct sna_composite_channel *channel,
int16_t x, int16_t y)
{
float s = 0, t = 0, w = 1;
x += channel->offset[0];
y += channel->offset[1];
if (channel->is_affine) {
sna_get_transformed_coordinates(x, y,
channel->transform,
&s, &t);
VERTEX(s * channel->scale[0]);
VERTEX(t * channel->scale[1]);
} else {
sna_get_transformed_coordinates_3d(x, y,
channel->transform,
&s, &t, &w);
VERTEX(s * channel->scale[0]);
VERTEX(t * channel->scale[1]);
VERTEX(w);
}
}
static void
gen2_emit_composite_vertex(struct sna *sna,
const struct sna_composite_op *op,
int16_t srcX, int16_t srcY,
int16_t mskX, int16_t mskY,
int16_t dstX, int16_t dstY)
{
gen2_emit_composite_dstcoord(sna, dstX, dstY);
if (op->src.is_linear)
gen2_emit_composite_linear(sna, &op->src, srcX, srcY);
else if (!op->src.is_solid)
gen2_emit_composite_texcoord(sna, &op->src, srcX, srcY);
if (op->mask.is_linear)
gen2_emit_composite_linear(sna, &op->mask, mskX, mskY);
else if (op->mask.bo)
gen2_emit_composite_texcoord(sna, &op->mask, mskX, mskY);
}
fastcall static void
gen2_emit_composite_primitive(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
gen2_emit_composite_vertex(sna, op,
r->src.x + r->width,
r->src.y + r->height,
r->mask.x + r->width,
r->mask.y + r->height,
op->dst.x + r->dst.x + r->width,
op->dst.y + r->dst.y + r->height);
gen2_emit_composite_vertex(sna, op,
r->src.x,
r->src.y + r->height,
r->mask.x,
r->mask.y + r->height,
op->dst.x + r->dst.x,
op->dst.y + r->dst.y + r->height);
gen2_emit_composite_vertex(sna, op,
r->src.x,
r->src.y,
r->mask.x,
r->mask.y,
op->dst.x + r->dst.x,
op->dst.y + r->dst.y);
}
fastcall static void
gen2_emit_composite_primitive_constant(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
int16_t dst_x = r->dst.x + op->dst.x;
int16_t dst_y = r->dst.y + op->dst.y;
gen2_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height);
gen2_emit_composite_dstcoord(sna, dst_x, dst_y + r->height);
gen2_emit_composite_dstcoord(sna, dst_x, dst_y);
}
fastcall static void
gen2_emit_composite_primitive_linear(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
int16_t dst_x = r->dst.x + op->dst.x;
int16_t dst_y = r->dst.y + op->dst.y;
gen2_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height);
gen2_emit_composite_linear(sna, &op->src,
r->src.x + r->width, r->src.y + r->height);
gen2_emit_composite_dstcoord(sna, dst_x, dst_y + r->height);
gen2_emit_composite_linear(sna, &op->src,
r->src.x, r->src.y + r->height);
gen2_emit_composite_dstcoord(sna, dst_x, dst_y);
gen2_emit_composite_linear(sna, &op->src,
r->src.x, r->src.y);
}
fastcall static void
gen2_emit_composite_primitive_identity(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float w = r->width;
float h = r->height;
float *v;
v = (float *)sna->kgem.batch + sna->kgem.nbatch;
sna->kgem.nbatch += 12;
v[8] = v[4] = r->dst.x + op->dst.x;
v[0] = v[4] + w;
v[9] = r->dst.y + op->dst.y;
v[5] = v[1] = v[9] + h;
v[10] = v[6] = (r->src.x + op->src.offset[0]) * op->src.scale[0];
v[2] = v[6] + w * op->src.scale[0];
v[11] = (r->src.y + op->src.offset[1]) * op->src.scale[1];
v[7] = v[3] = v[11] + h * op->src.scale[1];
}
fastcall static void
gen2_emit_composite_primitive_affine(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
PictTransform *transform = op->src.transform;
int16_t dst_x = r->dst.x + op->dst.x;
int16_t dst_y = r->dst.y + op->dst.y;
int src_x = r->src.x + (int)op->src.offset[0];
int src_y = r->src.y + (int)op->src.offset[1];
float sx, sy;
_sna_get_transformed_coordinates(src_x + r->width, src_y + r->height,
transform,
&sx, &sy);
gen2_emit_composite_dstcoord(sna, dst_x + r->width, dst_y + r->height);
VERTEX(sx * op->src.scale[0]);
VERTEX(sy * op->src.scale[1]);
_sna_get_transformed_coordinates(src_x, src_y + r->height,
transform,
&sx, &sy);
gen2_emit_composite_dstcoord(sna, dst_x, dst_y + r->height);
VERTEX(sx * op->src.scale[0]);
VERTEX(sy * op->src.scale[1]);
_sna_get_transformed_coordinates(src_x, src_y,
transform,
&sx, &sy);
gen2_emit_composite_dstcoord(sna, dst_x, dst_y);
VERTEX(sx * op->src.scale[0]);
VERTEX(sy * op->src.scale[1]);
}
fastcall static void
gen2_emit_composite_primitive_constant_identity_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float w = r->width;
float h = r->height;
float *v;
v = (float *)sna->kgem.batch + sna->kgem.nbatch;
sna->kgem.nbatch += 12;
v[8] = v[4] = r->dst.x + op->dst.x;
v[0] = v[4] + w;
v[9] = r->dst.y + op->dst.y;
v[5] = v[1] = v[9] + h;
v[10] = v[6] = (r->mask.x + op->mask.offset[0]) * op->mask.scale[0];
v[2] = v[6] + w * op->mask.scale[0];
v[11] = (r->mask.y + op->mask.offset[1]) * op->mask.scale[1];
v[7] = v[3] = v[11] + h * op->mask.scale[1];
}
static void gen2_magic_ca_pass(struct sna *sna,
const struct sna_composite_op *op)
{
uint32_t ablend, cblend, *src, *dst;
int n;
if (!op->need_magic_ca_pass)
return;
DBG(("%s: batch=%x, vertex=%x\n", __FUNCTION__,
sna->kgem.nbatch, sna->render_state.gen2.vertex_offset));
assert(op->mask.bo);
assert(op->has_component_alpha);
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 | I1_LOAD_S(8) | 0);
BATCH(BLENDFACTOR_ONE << S8_SRC_BLEND_FACTOR_SHIFT |
BLENDFACTOR_ONE << S8_DST_BLEND_FACTOR_SHIFT |
S8_ENABLE_COLOR_BLEND | S8_BLENDFUNC_ADD |
S8_ENABLE_COLOR_BUFFER_WRITE);
sna->render_state.gen2.ls1 = 0;
gen2_get_blend_factors(op, PictOpAdd, &cblend, &ablend);
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
LOAD_TEXTURE_BLEND_STAGE(0) | 1);
BATCH(cblend);
BATCH(ablend);
sna->render_state.gen2.ls2 = 0;
src = sna->kgem.batch + sna->render_state.gen2.vertex_offset;
dst = sna->kgem.batch + sna->kgem.nbatch;
n = 1 + sna->render.vertex_index;
sna->kgem.nbatch += n;
assert(sna->kgem.nbatch <= KGEM_BATCH_SIZE(&sna->kgem));
while (n--)
*dst++ = *src++;
}
static void gen2_vertex_flush(struct sna *sna,
const struct sna_composite_op *op)
{
if (sna->render.vertex_index == 0)
return;
sna->kgem.batch[sna->render_state.gen2.vertex_offset] |=
sna->render.vertex_index - 1;
gen2_magic_ca_pass(sna, op);
sna->render_state.gen2.vertex_offset = 0;
sna->render.vertex_index = 0;
}
inline static int gen2_get_rectangles(struct sna *sna,
const struct sna_composite_op *op,
int want)
{
struct gen2_render_state *state = &sna->render_state.gen2;
int rem = batch_space(sna), size, need;
DBG(("%s: want=%d, floats_per_vertex=%d, rem=%d\n",
__FUNCTION__, want, op->floats_per_vertex, rem));
assert(op->floats_per_vertex);
assert(op->floats_per_rect == 3 * op->floats_per_vertex);
need = 1;
size = op->floats_per_rect;
if (op->need_magic_ca_pass)
need += 6 + size*sna->render.vertex_index, size *= 2;
DBG(("%s: want=%d, need=%d,size=%d, rem=%d\n",
__FUNCTION__, want, need, size, rem));
if (rem < need + size) {
gen2_vertex_flush(sna, op);
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
return 0;
}
rem -= need;
if (state->vertex_offset == 0) {
if ((sna->kgem.batch[sna->kgem.nbatch-1] & ~0xffff) ==
(PRIM3D_INLINE | PRIM3D_RECTLIST)) {
uint32_t *b = &sna->kgem.batch[sna->kgem.nbatch-1];
sna->render.vertex_index = 1 + (*b & 0xffff);
*b = PRIM3D_INLINE | PRIM3D_RECTLIST;
state->vertex_offset = sna->kgem.nbatch - 1;
assert(!op->need_magic_ca_pass);
} else {
state->vertex_offset = sna->kgem.nbatch;
BATCH(PRIM3D_INLINE | PRIM3D_RECTLIST);
}
}
if (want > 1 && want * size > rem)
want = rem / size;
assert(want);
sna->render.vertex_index += want*op->floats_per_rect;
return want;
}
fastcall static void
gen2_render_composite_blt(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
if (!gen2_get_rectangles(sna, op, 1)) {
gen2_emit_composite_state(sna, op);
gen2_get_rectangles(sna, op, 1);
}
op->prim_emit(sna, op, r);
}
fastcall static void
gen2_render_composite_box(struct sna *sna,
const struct sna_composite_op *op,
const BoxRec *box)
{
struct sna_composite_rectangles r;
if (!gen2_get_rectangles(sna, op, 1)) {
gen2_emit_composite_state(sna, op);
gen2_get_rectangles(sna, op, 1);
}
DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
r.dst.x = box->x1; r.dst.y = box->y1;
r.width = box->x2 - box->x1;
r.height = box->y2 - box->y1;
r.src = r.mask = r.dst;
op->prim_emit(sna, op, &r);
}
static void
gen2_render_composite_boxes(struct sna *sna,
const struct sna_composite_op *op,
const BoxRec *box, int nbox)
{
do {
int nbox_this_time;
nbox_this_time = gen2_get_rectangles(sna, op, nbox);
if (nbox_this_time == 0) {
gen2_emit_composite_state(sna, op);
nbox_this_time = gen2_get_rectangles(sna, op, nbox);
}
nbox -= nbox_this_time;
do {
struct sna_composite_rectangles r;
DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
r.dst.x = box->x1; r.dst.y = box->y1;
r.width = box->x2 - box->x1;
r.height = box->y2 - box->y1;
r.src = r.mask = r.dst;
op->prim_emit(sna, op, &r);
box++;
} while (--nbox_this_time);
} while (nbox);
}
static void gen2_render_composite_done(struct sna *sna,
const struct sna_composite_op *op)
{
gen2_vertex_flush(sna, op);
if (op->mask.bo)
kgem_bo_destroy(&sna->kgem, op->mask.bo);
if (op->src.bo)
kgem_bo_destroy(&sna->kgem, op->src.bo);
sna_render_composite_redirect_done(sna, op);
}
static bool
gen2_composite_solid_init(struct sna *sna,
struct sna_composite_channel *channel,
uint32_t color)
{
channel->filter = PictFilterNearest;
channel->repeat = RepeatNormal;
channel->is_solid = true;
channel->width = 1;
channel->height = 1;
channel->pict_format = PICT_a8r8g8b8;
channel->bo = NULL;
channel->u.gen2.pixel = color;
channel->scale[0] = channel->scale[1] = 1;
channel->offset[0] = channel->offset[1] = 0;
return true;
}
#define xFixedToDouble(f) pixman_fixed_to_double(f)
static bool
gen2_composite_linear_init(struct sna *sna,
PicturePtr picture,
struct sna_composite_channel *channel,
int x, int y,
int w, int h,
int dst_x, int dst_y)
{
PictLinearGradient *linear =
(PictLinearGradient *)picture->pSourcePict;
pixman_fixed_t tx, ty;
float x0, y0, sf;
float dx, dy;
DBG(("%s: p1=(%f, %f), p2=(%f, %f)\n",
__FUNCTION__,
xFixedToDouble(linear->p1.x), xFixedToDouble(linear->p1.y),
xFixedToDouble(linear->p2.x), xFixedToDouble(linear->p2.y)));
if (linear->p2.x == linear->p1.x && linear->p2.y == linear->p1.y)
return 0;
if (!sna_transform_is_affine(picture->transform)) {
DBG(("%s: fallback due to projective transform\n",
__FUNCTION__));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
channel->bo = sna_render_get_gradient(sna, (PictGradient *)linear);
if (!channel->bo)
return 0;
channel->filter = PictFilterNearest;
channel->repeat = picture->repeat ? picture->repeatType : RepeatNone;
channel->is_linear = true;
channel->width = channel->bo->pitch / 4;
channel->height = 1;
channel->pict_format = PICT_a8r8g8b8;
channel->scale[0] = channel->scale[1] = 1;
channel->offset[0] = channel->offset[1] = 0;
if (sna_transform_is_translation(picture->transform, &tx, &ty)) {
dx = xFixedToDouble(linear->p2.x - linear->p1.x);
dy = xFixedToDouble(linear->p2.y - linear->p1.y);
x0 = xFixedToDouble(linear->p1.x);
y0 = xFixedToDouble(linear->p1.y);
if (tx | ty) {
x0 -= pixman_fixed_to_double(tx);
y0 -= pixman_fixed_to_double(ty);
}
} else {
struct pixman_f_vector p1, p2;
struct pixman_f_transform m, inv;
pixman_f_transform_from_pixman_transform(&m, picture->transform);
DBG(("%s: transform = [%f %f %f, %f %f %f, %f %f %f]\n",
__FUNCTION__,
m.m[0][0], m.m[0][1], m.m[0][2],
m.m[1][0], m.m[1][1], m.m[1][2],
m.m[2][0], m.m[2][1], m.m[2][2]));
if (!pixman_f_transform_invert(&inv, &m))
return 0;
p1.v[0] = pixman_fixed_to_double(linear->p1.x);
p1.v[1] = pixman_fixed_to_double(linear->p1.y);
p1.v[2] = 1.;
pixman_f_transform_point(&inv, &p1);
p2.v[0] = pixman_fixed_to_double(linear->p2.x);
p2.v[1] = pixman_fixed_to_double(linear->p2.y);
p2.v[2] = 1.;
pixman_f_transform_point(&inv, &p2);
DBG(("%s: untransformed: p1=(%f, %f, %f), p2=(%f, %f, %f)\n",
__FUNCTION__,
p1.v[0], p1.v[1], p1.v[2],
p2.v[0], p2.v[1], p2.v[2]));
dx = p2.v[0] - p1.v[0];
dy = p2.v[1] - p1.v[1];
x0 = p1.v[0];
y0 = p1.v[1];
}
sf = dx*dx + dy*dy;
dx /= sf;
dy /= sf;
channel->u.gen2.linear_dx = dx;
channel->u.gen2.linear_dy = dy;
channel->u.gen2.linear_offset = -dx*(x0+dst_x-x) + -dy*(y0+dst_y-y);
DBG(("%s: dx=%f, dy=%f, offset=%f\n",
__FUNCTION__, dx, dy, channel->u.gen2.linear_offset));
return channel->bo != NULL;
}
static bool source_is_covered(PicturePtr picture,
int x, int y,
int width, int height)
{
int x1, y1, x2, y2;
if (picture->repeat && picture->repeatType != RepeatNone)
return true;
if (picture->pDrawable == NULL)
return false;
if (picture->transform) {
pixman_box16_t sample;
sample.x1 = x;
sample.y1 = y;
sample.x2 = x + width;
sample.y2 = y + height;
pixman_transform_bounds(picture->transform, &sample);
x1 = sample.x1;
x2 = sample.x2;
y1 = sample.y1;
y2 = sample.y2;
} else {
x1 = x;
y1 = y;
x2 = x + width;
y2 = y + height;
}
return
x1 >= 0 && y1 >= 0 &&
x2 <= picture->pDrawable->width &&
y2 <= picture->pDrawable->height;
}
static bool
gen2_check_card_format(struct sna *sna,
PicturePtr picture,
struct sna_composite_channel *channel,
int x, int y, int w, int h,
bool *fixup_alpha)
{
uint32_t format = picture->format;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(i8xx_tex_formats); i++) {
if (i8xx_tex_formats[i].fmt == format)
return true;
}
for (i = 0; i < ARRAY_SIZE(i85x_tex_formats); i++) {
if (i85x_tex_formats[i].fmt == format) {
if (sna->kgem.gen >= 021)
return true;
if (source_is_covered(picture, x, y, w,h)) {
channel->is_opaque = true;
return true;
}
*fixup_alpha = true;
return false;
}
}
*fixup_alpha = false;
return false;
}
static int
gen2_composite_picture(struct sna *sna,
PicturePtr picture,
struct sna_composite_channel *channel,
int x, int y,
int w, int h,
int dst_x, int dst_y,
bool precise)
{
PixmapPtr pixmap;
uint32_t color;
int16_t dx, dy;
bool fixup_alpha;
DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n",
__FUNCTION__, x, y, w, h, dst_x, dst_y));
channel->is_solid = false;
channel->is_linear = false;
channel->is_opaque = false;
channel->is_affine = true;
channel->transform = NULL;
if (sna_picture_is_solid(picture, &color))
return gen2_composite_solid_init(sna, channel, color);
if (!gen2_check_repeat(picture)) {
DBG(("%s -- fallback, unhandled repeat %d\n",
__FUNCTION__, picture->repeat));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
if (!gen2_check_filter(picture)) {
DBG(("%s -- fallback, unhandled filter %d\n",
__FUNCTION__, picture->filter));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
if (picture->pDrawable == NULL) {
int ret;
if (picture->pSourcePict->type == SourcePictTypeLinear)
return gen2_composite_linear_init(sna, picture, channel,
x, y,
w, h,
dst_x, dst_y);
DBG(("%s -- fallback, unhandled source %d\n",
__FUNCTION__, picture->pSourcePict->type));
ret = -1;
if (!precise)
ret = sna_render_picture_approximate_gradient(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
if (ret == -1)
ret = sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
return ret;
}
if (picture->alphaMap) {
DBG(("%s -- fallback, alphamap\n", __FUNCTION__));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
channel->repeat = picture->repeat ? picture->repeatType : RepeatNone;
channel->filter = picture->filter;
pixmap = get_drawable_pixmap(picture->pDrawable);
get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy);
x += dx + picture->pDrawable->x;
y += dy + picture->pDrawable->y;
channel->is_affine = sna_transform_is_affine(picture->transform);
if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) {
DBG(("%s: integer translation (%d, %d), removing\n",
__FUNCTION__, dx, dy));
x += dx;
y += dy;
channel->transform = NULL;
channel->filter = PictFilterNearest;
} else
channel->transform = picture->transform;
if (!gen2_check_card_format(sna, picture, channel, x, y, w ,h, &fixup_alpha))
return sna_render_picture_convert(sna, picture, channel, pixmap,
x, y, w, h, dst_x, dst_y, fixup_alpha);
channel->pict_format = picture->format;
if (too_large(pixmap->drawable.width, pixmap->drawable.height))
return sna_render_picture_extract(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
return sna_render_pixmap_bo(sna, channel, pixmap,
x, y, w, h, dst_x, dst_y);
}
static bool
gen2_composite_set_target(struct sna *sna,
struct sna_composite_op *op,
PicturePtr dst,
int x, int y, int w, int h)
{
BoxRec box;
op->dst.pixmap = get_drawable_pixmap(dst->pDrawable);
op->dst.format = dst->format;
op->dst.width = op->dst.pixmap->drawable.width;
op->dst.height = op->dst.pixmap->drawable.height;
if (w && h) {
box.x1 = x;
box.y1 = y;
box.x2 = x + w;
box.y2 = y + h;
} else
sna_render_picture_extents(dst, &box);
op->dst.bo = sna_drawable_use_bo (dst->pDrawable,
PREFER_GPU | FORCE_GPU | RENDER_GPU,
&box, &op->damage);
if (op->dst.bo == NULL)
return false;
if (op->dst.bo->pitch < 8) {
struct sna_pixmap *priv;
struct kgem_bo *bo;
priv = sna_pixmap_move_to_gpu (op->dst.pixmap,
MOVE_READ | MOVE_WRITE);
if (priv == NULL || priv->pinned)
return false;
assert(op->dst.bo == priv->gpu_bo);
bo = kgem_replace_bo(&sna->kgem, priv->gpu_bo,
op->dst.width, op->dst.height, 8,
op->dst.pixmap->drawable.bitsPerPixel);
if (bo == NULL)
return false;
kgem_bo_destroy(&sna->kgem, priv->gpu_bo);
priv->gpu_bo = bo;
op->dst.bo = priv->gpu_bo;
op->damage = &priv->gpu_damage;
if (sna_damage_is_all(op->damage,
op->dst.width, op->dst.height))
op->damage = NULL;
}
get_drawable_deltas(dst->pDrawable, op->dst.pixmap,
&op->dst.x, &op->dst.y);
DBG(("%s: pixmap=%p, format=%08x, size=%dx%d, pitch=%d, delta=(%d,%d),damage=%p\n",
__FUNCTION__,
op->dst.pixmap, (int)op->dst.format,
op->dst.width, op->dst.height,
op->dst.bo->pitch,
op->dst.x, op->dst.y,
op->damage ? *op->damage : (void *)-1));
assert(op->dst.bo->proxy == NULL);
return true;
}
static bool
try_blt(struct sna *sna,
PicturePtr dst,
PicturePtr src,
int width, int height)
{
uint32_t color;
if (sna->kgem.mode != KGEM_RENDER) {
DBG(("%s: already performing BLT\n", __FUNCTION__));
return true;
}
if (too_large(width, height)) {
DBG(("%s: operation too large for 3D pipe (%d, %d)\n",
__FUNCTION__, width, height));
return true;
}
if (too_large(dst->pDrawable->width, dst->pDrawable->height)) {
DBG(("%s: target too large for 3D pipe (%d, %d)\n",
__FUNCTION__,
dst->pDrawable->width, dst->pDrawable->height));
return true;
}
/* If it is a solid, try to use the BLT paths */
if (sna_picture_is_solid(src, &color))
return true;
if (!src->pDrawable)
return false;
if (too_large(src->pDrawable->width, src->pDrawable->height)) {
DBG(("%s: source too large for 3D pipe (%d, %d)\n",
__FUNCTION__,
src->pDrawable->width, src->pDrawable->height));
return true;
}
return !is_gpu(src->pDrawable);
}
static bool
is_unhandled_gradient(PicturePtr picture)
{
if (picture->pDrawable)
return false;
switch (picture->pSourcePict->type) {
case SourcePictTypeSolidFill:
case SourcePictTypeLinear:
return false;
default:
return true;
}
}
static bool
has_alphamap(PicturePtr p)
{
return p->alphaMap != NULL;
}
static bool
untransformed(PicturePtr p)
{
return !p->transform || pixman_transform_is_int_translate(p->transform);
}
static bool
need_upload(PicturePtr p)
{
return p->pDrawable && unattached(p->pDrawable) && untransformed(p);
}
static bool
source_is_busy(PixmapPtr pixmap)
{
struct sna_pixmap *priv = sna_pixmap(pixmap);
if (priv == NULL)
return false;
if (priv->clear)
return false;
if (priv->gpu_bo && kgem_bo_is_busy(priv->gpu_bo))
return true;
if (priv->cpu_bo && kgem_bo_is_busy(priv->cpu_bo))
return true;
return priv->gpu_damage && !priv->cpu_damage;
}
static bool
source_fallback(PicturePtr p, PixmapPtr pixmap)
{
if (sna_picture_is_solid(p, NULL))
return false;
if (is_unhandled_gradient(p) || !gen2_check_repeat(p))
return true;
if (pixmap && source_is_busy(pixmap))
return false;
return has_alphamap(p) || !gen2_check_filter(p) || need_upload(p);
}
static bool
gen2_composite_fallback(struct sna *sna,
PicturePtr src,
PicturePtr mask,
PicturePtr dst)
{
PixmapPtr src_pixmap;
PixmapPtr mask_pixmap;
PixmapPtr dst_pixmap;
bool src_fallback, mask_fallback;
if (!gen2_check_dst_format(dst->format)) {
DBG(("%s: unknown destination format: %d\n",
__FUNCTION__, dst->format));
return true;
}
dst_pixmap = get_drawable_pixmap(dst->pDrawable);
src_pixmap = src->pDrawable ? get_drawable_pixmap(src->pDrawable) : NULL;
src_fallback = source_fallback(src, src_pixmap);
if (mask) {
mask_pixmap = mask->pDrawable ? get_drawable_pixmap(mask->pDrawable) : NULL;
mask_fallback = source_fallback(mask, mask_pixmap);
} else {
mask_pixmap = NULL;
mask_fallback = NULL;
}
/* If we are using the destination as a source and need to
* readback in order to upload the source, do it all
* on the cpu.
*/
if (src_pixmap == dst_pixmap && src_fallback) {
DBG(("%s: src is dst and will fallback\n",__FUNCTION__));
return true;
}
if (mask_pixmap == dst_pixmap && mask_fallback) {
DBG(("%s: mask is dst and will fallback\n",__FUNCTION__));
return true;
}
/* If anything is on the GPU, push everything out to the GPU */
if (dst_use_gpu(dst_pixmap)) {
DBG(("%s: dst is already on the GPU, try to use GPU\n",
__FUNCTION__));
return false;
}
if (src_pixmap && !src_fallback) {
DBG(("%s: src is already on the GPU, try to use GPU\n",
__FUNCTION__));
return false;
}
if (mask_pixmap && !mask_fallback) {
DBG(("%s: mask is already on the GPU, try to use GPU\n",
__FUNCTION__));
return false;
}
/* However if the dst is not on the GPU and we need to
* render one of the sources using the CPU, we may
* as well do the entire operation in place onthe CPU.
*/
if (src_fallback) {
DBG(("%s: dst is on the CPU and src will fallback\n",
__FUNCTION__));
return true;
}
if (mask && mask_fallback) {
DBG(("%s: dst is on the CPU and mask will fallback\n",
__FUNCTION__));
return true;
}
if (too_large(dst_pixmap->drawable.width,
dst_pixmap->drawable.height) &&
dst_is_cpu(dst_pixmap)) {
DBG(("%s: dst is on the CPU and too large\n", __FUNCTION__));
return true;
}
DBG(("%s: dst is not on the GPU and the operation should not fallback\n",
__FUNCTION__));
return false;
}
static int
reuse_source(struct sna *sna,
PicturePtr src, struct sna_composite_channel *sc, int src_x, int src_y,
PicturePtr mask, struct sna_composite_channel *mc, int msk_x, int msk_y)
{
uint32_t color;
if (src_x != msk_x || src_y != msk_y)
return false;
if (src == mask) {
DBG(("%s: mask is source\n", __FUNCTION__));
*mc = *sc;
mc->bo = kgem_bo_reference(mc->bo);
return true;
}
if (sna_picture_is_solid(mask, &color))
return gen2_composite_solid_init(sna, mc, color);
if (sc->is_solid)
return false;
if (src->pDrawable == NULL || mask->pDrawable != src->pDrawable)
return false;
DBG(("%s: mask reuses source drawable\n", __FUNCTION__));
if (!sna_transform_equal(src->transform, mask->transform))
return false;
if (!sna_picture_alphamap_equal(src, mask))
return false;
if (!gen2_check_repeat(mask))
return false;
if (!gen2_check_filter(mask))
return false;
if (!gen2_check_format(sna, mask))
return false;
DBG(("%s: reusing source channel for mask with a twist\n",
__FUNCTION__));
*mc = *sc;
mc->repeat = mask->repeat ? mask->repeatType : RepeatNone;
mc->filter = mask->filter;
mc->pict_format = mask->format;
mc->bo = kgem_bo_reference(mc->bo);
return true;
}
static bool
gen2_render_composite(struct sna *sna,
uint8_t op,
PicturePtr src,
PicturePtr mask,
PicturePtr dst,
int16_t src_x, int16_t src_y,
int16_t mask_x, int16_t mask_y,
int16_t dst_x, int16_t dst_y,
int16_t width, int16_t height,
struct sna_composite_op *tmp)
{
DBG(("%s()\n", __FUNCTION__));
if (op >= ARRAY_SIZE(gen2_blend_op)) {
DBG(("%s: fallback due to unhandled blend op: %d\n",
__FUNCTION__, op));
return false;
}
/* Try to use the BLT engine unless it implies a
* 3D -> 2D context switch.
*/
if (mask == NULL &&
try_blt(sna, dst, src, width, height) &&
sna_blt_composite(sna,
op, src, dst,
src_x, src_y,
dst_x, dst_y,
width, height,
tmp, false))
return true;
if (gen2_composite_fallback(sna, src, mask, dst))
return false;
if (need_tiling(sna, width, height))
return sna_tiling_composite(op, src, mask, dst,
src_x, src_y,
mask_x, mask_y,
dst_x, dst_y,
width, height,
tmp);
if (!gen2_composite_set_target(sna, tmp, dst,
dst_x, dst_y, width, height)) {
DBG(("%s: unable to set render target\n",
__FUNCTION__));
return false;
}
tmp->op = op;
sna_render_composite_redirect_init(tmp);
if (too_large(tmp->dst.width, tmp->dst.height) ||
tmp->dst.bo->pitch > MAX_3D_PITCH) {
if (!sna_render_composite_redirect(sna, tmp,
dst_x, dst_y, width, height))
return false;
}
switch (gen2_composite_picture(sna, src, &tmp->src,
src_x, src_y,
width, height,
dst_x, dst_y,
dst->polyMode == PolyModePrecise)) {
case -1:
DBG(("%s: fallback -- unable to prepare source\n",
__FUNCTION__));
goto cleanup_dst;
case 0:
gen2_composite_solid_init(sna, &tmp->src, 0);
break;
case 1:
if (mask == NULL && tmp->src.bo &&
sna_blt_composite__convert(sna,
dst_x, dst_y, width, height,
tmp))
return true;
break;
}
if (mask) {
if (!reuse_source(sna,
src, &tmp->src, src_x, src_y,
mask, &tmp->mask, mask_x, mask_y)) {
switch (gen2_composite_picture(sna, mask, &tmp->mask,
mask_x, mask_y,
width, height,
dst_x, dst_y,
dst->polyMode == PolyModePrecise)) {
case -1:
DBG(("%s: fallback -- unable to prepare mask\n",
__FUNCTION__));
goto cleanup_src;
case 0:
gen2_composite_solid_init(sna, &tmp->mask, 0);
case 1:
break;
}
}
if (mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) {
/* Check if it's component alpha that relies on a source alpha
* and on the source value. We can only get one of those
* into the single source value that we get to blend with.
*/
tmp->has_component_alpha = true;
if (gen2_blend_op[op].src_alpha &&
(gen2_blend_op[op].src_blend != BLENDFACTOR_ZERO)) {
if (op != PictOpOver) {
DBG(("%s: fallback -- unsupported CA blend (src_blend=%d)\n",
__FUNCTION__,
gen2_blend_op[op].src_blend));
goto cleanup_dst;
}
tmp->need_magic_ca_pass = true;
tmp->op = PictOpOutReverse;
}
}
/* convert solid to a texture (pure convenience) */
if (tmp->mask.is_solid)
tmp->mask.bo = sna_render_get_solid(sna, tmp->mask.u.gen2.pixel);
}
tmp->floats_per_vertex = 2;
if (!tmp->src.is_solid)
tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 3;
if (tmp->mask.bo)
tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 3;
tmp->floats_per_rect = 3*tmp->floats_per_vertex;
tmp->prim_emit = gen2_emit_composite_primitive;
if (tmp->mask.bo) {
if (tmp->mask.transform == NULL) {
if (tmp->src.is_solid)
tmp->prim_emit = gen2_emit_composite_primitive_constant_identity_mask;
}
} else {
if (tmp->src.is_solid)
tmp->prim_emit = gen2_emit_composite_primitive_constant;
else if (tmp->src.is_linear)
tmp->prim_emit = gen2_emit_composite_primitive_linear;
else if (tmp->src.transform == NULL)
tmp->prim_emit = gen2_emit_composite_primitive_identity;
else if (tmp->src.is_affine)
tmp->prim_emit = gen2_emit_composite_primitive_affine;
}
tmp->blt = gen2_render_composite_blt;
tmp->box = gen2_render_composite_box;
tmp->boxes = gen2_render_composite_boxes;
tmp->done = gen2_render_composite_done;
if (!kgem_check_bo(&sna->kgem,
tmp->dst.bo, tmp->src.bo, tmp->mask.bo,
NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem,
tmp->dst.bo, tmp->src.bo, tmp->mask.bo,
NULL)) {
DBG(("%s: fallback, operation does not fit into GTT\n",
__FUNCTION__));
goto cleanup_mask;
}
}
gen2_emit_composite_state(sna, tmp);
return true;
cleanup_mask:
if (tmp->mask.bo)
kgem_bo_destroy(&sna->kgem, tmp->mask.bo);
cleanup_src:
if (tmp->src.bo)
kgem_bo_destroy(&sna->kgem, tmp->src.bo);
cleanup_dst:
if (tmp->redirect.real_bo)
kgem_bo_destroy(&sna->kgem, tmp->dst.bo);
return false;
}
fastcall static void
gen2_emit_composite_spans_primitive_constant(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
float *v = (float *)sna->kgem.batch + sna->kgem.nbatch;
uint32_t alpha = (uint8_t)(255 * opacity) << 24;
sna->kgem.nbatch += 9;
v[0] = op->base.dst.x + box->x2;
v[1] = op->base.dst.y + box->y2;
*((uint32_t *)v + 2) = alpha;
v[3] = op->base.dst.x + box->x1;
v[4] = v[1];
*((uint32_t *)v + 5) = alpha;
v[6] = v[3];
v[7] = op->base.dst.y + box->y1;
*((uint32_t *)v + 8) = alpha;
}
fastcall static void
gen2_emit_composite_spans_primitive_linear(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
union {
float f;
uint32_t u;
} alpha;
alpha.u = (uint8_t)(255 * opacity) << 24;
gen2_emit_composite_dstcoord(sna,
op->base.dst.x + box->x2,
op->base.dst.y + box->y2);
VERTEX(alpha.f);
gen2_emit_composite_linear(sna, &op->base.src, box->x2, box->y2);
gen2_emit_composite_dstcoord(sna,
op->base.dst.x + box->x1,
op->base.dst.y + box->y2);
VERTEX(alpha.f);
gen2_emit_composite_linear(sna, &op->base.src, box->x1, box->y2);
gen2_emit_composite_dstcoord(sna,
op->base.dst.x + box->x1,
op->base.dst.y + box->y1);
VERTEX(alpha.f);
gen2_emit_composite_linear(sna, &op->base.src, box->x1, box->y1);
}
fastcall static void
gen2_emit_composite_spans_primitive_identity_source(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
float *v = (float *)sna->kgem.batch + sna->kgem.nbatch;
uint32_t alpha = (uint8_t)(255 * opacity) << 24;
sna->kgem.nbatch += 15;
v[0] = op->base.dst.x + box->x2;
v[1] = op->base.dst.y + box->y2;
*((uint32_t *)v + 2) = alpha;
v[3] = (op->base.src.offset[0] + box->x2) * op->base.src.scale[0];
v[4] = (op->base.src.offset[1] + box->y2) * op->base.src.scale[1];
v[5] = op->base.dst.x + box->x1;
v[6] = v[1];
*((uint32_t *)v + 7) = alpha;
v[8] = (op->base.src.offset[0] + box->x1) * op->base.src.scale[0];
v[9] = v[4];
v[10] = v[5];
v[11] = op->base.dst.y + box->y1;
*((uint32_t *)v + 12) = alpha;
v[13] = v[8];
v[14] = (op->base.src.offset[1] + box->y1) * op->base.src.scale[1];
}
fastcall static void
gen2_emit_composite_spans_primitive_affine_source(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
PictTransform *transform = op->base.src.transform;
uint32_t alpha = (uint8_t)(255 * opacity) << 24;
float x, y, *v;
v = (float *)sna->kgem.batch + sna->kgem.nbatch;
sna->kgem.nbatch += 15;
v[0] = op->base.dst.x + box->x2;
v[6] = v[1] = op->base.dst.y + box->y2;
v[10] = v[5] = op->base.dst.x + box->x1;
v[11] = op->base.dst.y + box->y1;
*((uint32_t *)v + 2) = alpha;
*((uint32_t *)v + 7) = alpha;
*((uint32_t *)v + 12) = alpha;
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x2,
(int)op->base.src.offset[1] + box->y2,
transform,
&x, &y);
v[3] = x * op->base.src.scale[0];
v[4] = y * op->base.src.scale[1];
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1,
(int)op->base.src.offset[1] + box->y2,
transform,
&x, &y);
v[8] = x * op->base.src.scale[0];
v[9] = y * op->base.src.scale[1];
_sna_get_transformed_coordinates((int)op->base.src.offset[0] + box->x1,
(int)op->base.src.offset[1] + box->y1,
transform,
&x, &y);
v[13] = x * op->base.src.scale[0];
v[14] = y * op->base.src.scale[1];
}
static void
gen2_emit_composite_spans_vertex(struct sna *sna,
const struct sna_composite_spans_op *op,
int16_t x, int16_t y,
float opacity)
{
gen2_emit_composite_dstcoord(sna, x + op->base.dst.x, y + op->base.dst.y);
BATCH((uint8_t)(opacity * 255) << 24);
assert(!op->base.src.is_solid);
if (op->base.src.is_linear)
gen2_emit_composite_linear(sna, &op->base.src, x, y);
else
gen2_emit_composite_texcoord(sna, &op->base.src, x, y);
}
fastcall static void
gen2_emit_composite_spans_primitive(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
gen2_emit_composite_spans_vertex(sna, op, box->x2, box->y2, opacity);
gen2_emit_composite_spans_vertex(sna, op, box->x1, box->y2, opacity);
gen2_emit_composite_spans_vertex(sna, op, box->x1, box->y1, opacity);
}
static void
gen2_emit_spans_pipeline(struct sna *sna,
const struct sna_composite_spans_op *op)
{
uint32_t cblend, ablend;
uint32_t unwind;
cblend =
TB0C_LAST_STAGE | TB0C_RESULT_SCALE_1X | TB0C_OP_MODULATE |
TB0C_ARG1_SEL_DIFFUSE | TB0C_ARG1_REPLICATE_ALPHA |
TB0C_OUTPUT_WRITE_CURRENT;
ablend =
TB0A_RESULT_SCALE_1X | TB0A_OP_MODULATE |
TB0A_ARG1_SEL_DIFFUSE |
TB0A_OUTPUT_WRITE_CURRENT;
if (op->base.src.is_solid) {
ablend |= TB0A_ARG2_SEL_SPECULAR;
cblend |= TB0C_ARG2_SEL_SPECULAR;
if (op->base.dst.format == PICT_a8)
cblend |= TB0C_ARG2_REPLICATE_ALPHA;
} else if (op->base.dst.format == PICT_a8) {
ablend |= TB0A_ARG2_SEL_TEXEL0;
cblend |= TB0C_ARG2_SEL_TEXEL0 | TB0C_ARG2_REPLICATE_ALPHA;
} else {
if (PICT_FORMAT_RGB(op->base.src.pict_format) != 0)
cblend |= TB0C_ARG2_SEL_TEXEL0;
else
cblend |= TB0C_ARG2_SEL_ONE | TB0C_ARG2_INVERT;
if (op->base.src.is_opaque)
ablend |= TB0A_ARG2_SEL_ONE;
else
ablend |= TB0A_ARG2_SEL_TEXEL0;
}
unwind = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
LOAD_TEXTURE_BLEND_STAGE(0) | 1);
BATCH(cblend);
BATCH(ablend);
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls2 + 1,
sna->kgem.batch + unwind + 1,
2 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = unwind;
else
sna->render_state.gen2.ls2 = unwind;
}
static void gen2_emit_composite_spans_state(struct sna *sna,
const struct sna_composite_spans_op *op)
{
uint32_t unwind;
gen2_get_batch(sna, &op->base);
gen2_emit_target(sna, &op->base);
unwind = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
I1_LOAD_S(2) | I1_LOAD_S(3) | I1_LOAD_S(8) | 2);
BATCH(!op->base.src.is_solid << 12);
BATCH(S3_CULLMODE_NONE | S3_VERTEXHAS_XY | S3_DIFFUSE_PRESENT);
BATCH(gen2_get_blend_cntl(op->base.op, false, op->base.dst.format));
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls1 + 1,
sna->kgem.batch + unwind + 1,
3 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = unwind;
else
sna->render_state.gen2.ls1 = unwind;
gen2_disable_logic_op(sna);
gen2_emit_spans_pipeline(sna, op);
if (op->base.src.is_solid) {
if (op->base.src.u.gen2.pixel != sna->render_state.gen2.specular) {
BATCH(_3DSTATE_DFLT_SPECULAR_CMD);
BATCH(op->base.src.u.gen2.pixel);
sna->render_state.gen2.specular = op->base.src.u.gen2.pixel;
}
} else {
uint32_t v =_3DSTATE_VERTEX_FORMAT_2_CMD |
(op->base.src.is_affine ? TEXCOORDFMT_2D : TEXCOORDFMT_3D);
if (sna->render_state.gen2.vft != v) {
BATCH(v);
sna->render_state.gen2.vft = v;
}
gen2_emit_texture(sna, &op->base.src, 0);
}
}
fastcall static void
gen2_render_composite_spans_box(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box, float opacity)
{
DBG(("%s: src=+(%d, %d), opacity=%f, dst=+(%d, %d), box=(%d, %d) x (%d, %d)\n",
__FUNCTION__,
op->base.src.offset[0], op->base.src.offset[1],
opacity,
op->base.dst.x, op->base.dst.y,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
if (gen2_get_rectangles(sna, &op->base, 1) == 0) {
gen2_emit_composite_spans_state(sna, op);
gen2_get_rectangles(sna, &op->base, 1);
}
op->prim_emit(sna, op, box, opacity);
}
static void
gen2_render_composite_spans_boxes(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box, int nbox,
float opacity)
{
DBG(("%s: nbox=%d, src=+(%d, %d), opacity=%f, dst=+(%d, %d)\n",
__FUNCTION__, nbox,
op->base.src.offset[0], op->base.src.offset[1],
opacity,
op->base.dst.x, op->base.dst.y));
do {
int nbox_this_time;
nbox_this_time = gen2_get_rectangles(sna, &op->base, nbox);
if (nbox_this_time == 0) {
gen2_emit_composite_spans_state(sna, op);
nbox_this_time = gen2_get_rectangles(sna, &op->base, nbox);
}
nbox -= nbox_this_time;
do {
DBG((" %s: (%d, %d) x (%d, %d)\n", __FUNCTION__,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
op->prim_emit(sna, op, box++, opacity);
} while (--nbox_this_time);
} while (nbox);
}
fastcall static void
gen2_render_composite_spans_done(struct sna *sna,
const struct sna_composite_spans_op *op)
{
DBG(("%s()\n", __FUNCTION__));
gen2_vertex_flush(sna, &op->base);
if (op->base.src.bo)
kgem_bo_destroy(&sna->kgem, op->base.src.bo);
sna_render_composite_redirect_done(sna, &op->base);
}
static bool
gen2_check_composite_spans(struct sna *sna,
uint8_t op, PicturePtr src, PicturePtr dst,
int16_t width, int16_t height, unsigned flags)
{
if (op >= ARRAY_SIZE(gen2_blend_op))
return false;
if (gen2_composite_fallback(sna, src, NULL, dst))
return false;
if (need_tiling(sna, width, height)) {
if (!is_gpu(dst->pDrawable)) {
DBG(("%s: fallback, tiled operation not on GPU\n",
__FUNCTION__));
return false;
}
}
return true;
}
static bool
gen2_render_composite_spans(struct sna *sna,
uint8_t op,
PicturePtr src,
PicturePtr dst,
int16_t src_x, int16_t src_y,
int16_t dst_x, int16_t dst_y,
int16_t width, int16_t height,
unsigned flags,
struct sna_composite_spans_op *tmp)
{
DBG(("%s(src=(%d, %d), dst=(%d, %d), size=(%d, %d))\n", __FUNCTION__,
src_x, src_y, dst_x, dst_y, width, height));
assert(gen2_check_composite_spans(sna, op, src, dst, width, height, flags));
if (need_tiling(sna, width, height)) {
DBG(("%s: tiling, operation (%dx%d) too wide for pipeline\n",
__FUNCTION__, width, height));
return sna_tiling_composite_spans(op, src, dst,
src_x, src_y, dst_x, dst_y,
width, height, flags, tmp);
}
if (!gen2_composite_set_target(sna, &tmp->base, dst,
dst_x, dst_y, width, height)) {
DBG(("%s: unable to set render target\n",
__FUNCTION__));
return false;
}
tmp->base.op = op;
sna_render_composite_redirect_init(&tmp->base);
if (too_large(tmp->base.dst.width, tmp->base.dst.height) ||
tmp->base.dst.bo->pitch > MAX_3D_PITCH) {
if (!sna_render_composite_redirect(sna, &tmp->base,
dst_x, dst_y, width, height))
return false;
}
switch (gen2_composite_picture(sna, src, &tmp->base.src,
src_x, src_y,
width, height,
dst_x, dst_y,
dst->polyMode == PolyModePrecise)) {
case -1:
goto cleanup_dst;
case 0:
gen2_composite_solid_init(sna, &tmp->base.src, 0);
case 1:
break;
}
tmp->prim_emit = gen2_emit_composite_spans_primitive;
tmp->base.floats_per_vertex = 3;
if (tmp->base.src.is_solid) {
tmp->prim_emit = gen2_emit_composite_spans_primitive_constant;
} else if (tmp->base.src.is_linear) {
tmp->base.floats_per_vertex += 2;
tmp->prim_emit = gen2_emit_composite_spans_primitive_linear;
} else {
assert(tmp->base.src.bo);
tmp->base.floats_per_vertex += tmp->base.src.is_affine ? 2 : 3;
if (tmp->base.src.transform == NULL)
tmp->prim_emit = gen2_emit_composite_spans_primitive_identity_source;
else if (tmp->base.src.is_affine)
tmp->prim_emit = gen2_emit_composite_spans_primitive_affine_source;
}
tmp->base.mask.bo = NULL;
tmp->base.floats_per_rect = 3*tmp->base.floats_per_vertex;
tmp->box = gen2_render_composite_spans_box;
tmp->boxes = gen2_render_composite_spans_boxes;
tmp->done = gen2_render_composite_spans_done;
if (!kgem_check_bo(&sna->kgem,
tmp->base.dst.bo, tmp->base.src.bo,
NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem,
tmp->base.dst.bo, tmp->base.src.bo,
NULL))
goto cleanup_src;
}
gen2_emit_composite_spans_state(sna, tmp);
return true;
cleanup_src:
if (tmp->base.src.bo)
kgem_bo_destroy(&sna->kgem, tmp->base.src.bo);
cleanup_dst:
if (tmp->base.redirect.real_bo)
kgem_bo_destroy(&sna->kgem, tmp->base.dst.bo);
return false;
}
static void
gen2_emit_fill_pipeline(struct sna *sna, const struct sna_composite_op *op)
{
uint32_t blend, unwind;
unwind = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
LOAD_TEXTURE_BLEND_STAGE(0) | 1);
blend = TB0C_LAST_STAGE | TB0C_RESULT_SCALE_1X | TB0C_OP_ARG1 |
TB0C_ARG1_SEL_DIFFUSE |
TB0C_OUTPUT_WRITE_CURRENT;
if (op->dst.format == PICT_a8)
blend |= TB0C_ARG1_REPLICATE_ALPHA;
BATCH(blend);
BATCH(TB0A_RESULT_SCALE_1X | TB0A_OP_ARG1 |
TB0A_ARG1_SEL_DIFFUSE |
TB0A_OUTPUT_WRITE_CURRENT);
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls2 + 1,
sna->kgem.batch + unwind + 1,
2 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = unwind;
else
sna->render_state.gen2.ls2 = unwind;
}
static void gen2_emit_fill_composite_state(struct sna *sna,
const struct sna_composite_op *op,
uint32_t pixel)
{
uint32_t ls1;
gen2_get_batch(sna, op);
gen2_emit_target(sna, op);
ls1 = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
I1_LOAD_S(2) | I1_LOAD_S(3) | I1_LOAD_S(8) | 2);
BATCH(0);
BATCH(S3_CULLMODE_NONE | S3_VERTEXHAS_XY);
BATCH(gen2_get_blend_cntl(op->op, false, op->dst.format));
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls1 + 1,
sna->kgem.batch + ls1 + 1,
3 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = ls1;
else
sna->render_state.gen2.ls1 = ls1;
gen2_emit_fill_pipeline(sna, op);
if (pixel != sna->render_state.gen2.diffuse) {
BATCH(_3DSTATE_DFLT_DIFFUSE_CMD);
BATCH(pixel);
sna->render_state.gen2.diffuse = pixel;
}
}
static bool
gen2_render_fill_boxes_try_blt(struct sna *sna,
CARD8 op, PictFormat format,
const xRenderColor *color,
PixmapPtr dst, struct kgem_bo *dst_bo,
const BoxRec *box, int n)
{
uint8_t alu;
uint32_t pixel;
if (op > PictOpSrc)
return false;
if (op == PictOpClear) {
alu = GXclear;
pixel = 0;
} else if (!sna_get_pixel_from_rgba(&pixel,
color->red,
color->green,
color->blue,
color->alpha,
format))
return false;
else
alu = GXcopy;
return sna_blt_fill_boxes(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
pixel, box, n);
}
static inline bool prefer_blt_fill(struct sna *sna)
{
#if PREFER_BLT_FILL
return true;
#else
return sna->kgem.mode != KGEM_RENDER;
#endif
}
static inline bool prefer_blt_copy(struct sna *sna, unsigned flags)
{
#if PREFER_BLT_COPY
return true;
#else
return sna->kgem.mode != KGEM_RENDER;
#endif
}
static bool
gen2_render_fill_boxes(struct sna *sna,
CARD8 op,
PictFormat format,
const xRenderColor *color,
PixmapPtr dst, struct kgem_bo *dst_bo,
const BoxRec *box, int n)
{
struct sna_composite_op tmp;
uint32_t pixel;
if (op >= ARRAY_SIZE(gen2_blend_op)) {
DBG(("%s: fallback due to unhandled blend op: %d\n",
__FUNCTION__, op));
return false;
}
#if NO_FILL_BOXES
return gen2_render_fill_boxes_try_blt(sna, op, format, color,
dst, dst_bo,
box, n);
#endif
DBG(("%s (op=%d, format=%x, color=(%04x,%04x,%04x, %04x))\n",
__FUNCTION__, op, (int)format,
color->red, color->green, color->blue, color->alpha));
if (too_large(dst->drawable.width, dst->drawable.height) ||
dst_bo->pitch < 8 || dst_bo->pitch > MAX_3D_PITCH ||
!gen2_check_dst_format(format)) {
DBG(("%s: try blt, too large or incompatible destination\n",
__FUNCTION__));
if (gen2_render_fill_boxes_try_blt(sna, op, format, color,
dst, dst_bo,
box, n))
return true;
if (!gen2_check_dst_format(format))
return false;
assert(dst_bo->pitch >= 8);
return sna_tiling_fill_boxes(sna, op, format, color,
dst, dst_bo, box, n);
}
if (prefer_blt_fill(sna) &&
gen2_render_fill_boxes_try_blt(sna, op, format, color,
dst, dst_bo,
box, n))
return true;
if (op == PictOpClear)
pixel = 0;
else if (!sna_get_pixel_from_rgba(&pixel,
color->red,
color->green,
color->blue,
color->alpha,
PICT_a8r8g8b8))
return false;
DBG(("%s: using shader for op=%d, format=%x, pixel=%x\n",
__FUNCTION__, op, (int)format, pixel));
memset(&tmp, 0, sizeof(tmp));
tmp.op = op;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.format = format;
tmp.dst.bo = dst_bo;
tmp.floats_per_vertex = 2;
tmp.floats_per_rect = 6;
if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) {
kgem_submit(&sna->kgem);
assert(kgem_check_bo(&sna->kgem, dst_bo, NULL));
}
gen2_emit_fill_composite_state(sna, &tmp, pixel);
do {
int n_this_time = gen2_get_rectangles(sna, &tmp, n);
if (n_this_time == 0) {
gen2_emit_fill_composite_state(sna, &tmp, pixel);
n_this_time = gen2_get_rectangles(sna, &tmp, n);
}
n -= n_this_time;
do {
DBG((" (%d, %d), (%d, %d): %x\n",
box->x1, box->y1, box->x2, box->y2, pixel));
VERTEX(box->x2);
VERTEX(box->y2);
VERTEX(box->x1);
VERTEX(box->y2);
VERTEX(box->x1);
VERTEX(box->y1);
box++;
} while (--n_this_time);
} while (n);
gen2_vertex_flush(sna, &tmp);
return true;
}
static void gen2_emit_fill_state(struct sna *sna,
const struct sna_composite_op *op)
{
uint32_t ls1;
gen2_get_batch(sna, op);
gen2_emit_target(sna, op);
ls1 = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
I1_LOAD_S(2) | I1_LOAD_S(3) | I1_LOAD_S(8) | 2);
BATCH(0);
BATCH(S3_CULLMODE_NONE | S3_VERTEXHAS_XY);
BATCH(S8_ENABLE_COLOR_BUFFER_WRITE);
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls1 + 1,
sna->kgem.batch + ls1 + 1,
3 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = ls1;
else
sna->render_state.gen2.ls1 = ls1;
gen2_enable_logic_op(sna, op->op);
gen2_emit_fill_pipeline(sna, op);
if (op->src.u.gen2.pixel != sna->render_state.gen2.diffuse) {
BATCH(_3DSTATE_DFLT_DIFFUSE_CMD);
BATCH(op->src.u.gen2.pixel);
sna->render_state.gen2.diffuse = op->src.u.gen2.pixel;
}
}
static void
gen2_render_fill_op_blt(struct sna *sna,
const struct sna_fill_op *op,
int16_t x, int16_t y, int16_t w, int16_t h)
{
if (!gen2_get_rectangles(sna, &op->base, 1)) {
gen2_emit_fill_state(sna, &op->base);
gen2_get_rectangles(sna, &op->base, 1);
}
VERTEX(x+w);
VERTEX(y+h);
VERTEX(x);
VERTEX(y+h);
VERTEX(x);
VERTEX(y);
}
fastcall static void
gen2_render_fill_op_box(struct sna *sna,
const struct sna_fill_op *op,
const BoxRec *box)
{
if (!gen2_get_rectangles(sna, &op->base, 1)) {
gen2_emit_fill_state(sna, &op->base);
gen2_get_rectangles(sna, &op->base, 1);
}
VERTEX(box->x2);
VERTEX(box->y2);
VERTEX(box->x1);
VERTEX(box->y2);
VERTEX(box->x1);
VERTEX(box->y1);
}
fastcall static void
gen2_render_fill_op_boxes(struct sna *sna,
const struct sna_fill_op *op,
const BoxRec *box,
int nbox)
{
DBG(("%s: (%d, %d),(%d, %d)... x %d\n", __FUNCTION__,
box->x1, box->y1, box->x2, box->y2, nbox));
do {
int nbox_this_time = gen2_get_rectangles(sna, &op->base, nbox);
if (nbox_this_time == 0) {
gen2_emit_fill_state(sna, &op->base);
nbox_this_time = gen2_get_rectangles(sna, &op->base, nbox);
}
nbox -= nbox_this_time;
do {
VERTEX(box->x2);
VERTEX(box->y2);
VERTEX(box->x1);
VERTEX(box->y2);
VERTEX(box->x1);
VERTEX(box->y1);
box++;
} while (--nbox_this_time);
} while (nbox);
}
static void
gen2_render_fill_op_done(struct sna *sna, const struct sna_fill_op *op)
{
gen2_vertex_flush(sna, &op->base);
}
static bool
gen2_render_fill(struct sna *sna, uint8_t alu,
PixmapPtr dst, struct kgem_bo *dst_bo,
uint32_t color,
struct sna_fill_op *tmp)
{
#if NO_FILL
return sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
tmp);
#endif
/* Prefer to use the BLT if already engaged */
if (prefer_blt_fill(sna) &&
sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
tmp))
return true;
/* Must use the BLT if we can't RENDER... */
if (too_large(dst->drawable.width, dst->drawable.height) ||
dst_bo->pitch < 8 || dst_bo->pitch > MAX_3D_PITCH)
return sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
tmp);
tmp->base.op = alu;
tmp->base.dst.pixmap = dst;
tmp->base.dst.width = dst->drawable.width;
tmp->base.dst.height = dst->drawable.height;
tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp->base.dst.bo = dst_bo;
tmp->base.dst.x = tmp->base.dst.y = 0;
tmp->base.floats_per_vertex = 2;
tmp->base.floats_per_rect = 6;
tmp->base.src.u.gen2.pixel =
sna_rgba_for_color(color, dst->drawable.depth);
if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) {
kgem_submit(&sna->kgem);
return sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
tmp);
}
tmp->blt = gen2_render_fill_op_blt;
tmp->box = gen2_render_fill_op_box;
tmp->boxes = gen2_render_fill_op_boxes;
tmp->done = gen2_render_fill_op_done;
gen2_emit_fill_state(sna, &tmp->base);
return true;
}
static bool
gen2_render_fill_one_try_blt(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo,
uint32_t color,
int16_t x1, int16_t y1, int16_t x2, int16_t y2,
uint8_t alu)
{
BoxRec box;
box.x1 = x1;
box.y1 = y1;
box.x2 = x2;
box.y2 = y2;
return sna_blt_fill_boxes(sna, alu,
bo, dst->drawable.bitsPerPixel,
color, &box, 1);
}
static bool
gen2_render_fill_one(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo,
uint32_t color,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2,
uint8_t alu)
{
struct sna_composite_op tmp;
#if NO_FILL_ONE
return gen2_render_fill_one_try_blt(sna, dst, bo, color,
x1, y1, x2, y2, alu);
#endif
/* Prefer to use the BLT if already engaged */
if (prefer_blt_fill(sna) &&
gen2_render_fill_one_try_blt(sna, dst, bo, color,
x1, y1, x2, y2, alu))
return true;
/* Must use the BLT if we can't RENDER... */
if (too_large(dst->drawable.width, dst->drawable.height) ||
bo->pitch < 8 || bo->pitch > MAX_3D_PITCH)
return gen2_render_fill_one_try_blt(sna, dst, bo, color,
x1, y1, x2, y2, alu);
if (!kgem_check_bo(&sna->kgem, bo, NULL)) {
kgem_submit(&sna->kgem);
if (gen2_render_fill_one_try_blt(sna, dst, bo, color,
x1, y1, x2, y2, alu))
return true;
assert(kgem_check_bo(&sna->kgem, bo, NULL));
}
tmp.op = alu;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp.dst.bo = bo;
tmp.floats_per_vertex = 2;
tmp.floats_per_rect = 6;
tmp.need_magic_ca_pass = false;
tmp.src.u.gen2.pixel =
sna_rgba_for_color(color, dst->drawable.depth);
gen2_emit_fill_state(sna, &tmp);
gen2_get_rectangles(sna, &tmp, 1);
DBG(("%s: (%d, %d), (%d, %d): %x\n", __FUNCTION__,
x1, y1, x2, y2, tmp.src.u.gen2.pixel));
VERTEX(x2);
VERTEX(y2);
VERTEX(x1);
VERTEX(y2);
VERTEX(x1);
VERTEX(y1);
gen2_vertex_flush(sna, &tmp);
return true;
}
static void
gen2_render_copy_setup_source(struct sna_composite_channel *channel,
PixmapPtr pixmap,
struct kgem_bo *bo)
{
channel->filter = PictFilterNearest;
channel->repeat = RepeatNone;
channel->width = pixmap->drawable.width;
channel->height = pixmap->drawable.height;
channel->scale[0] = 1.f/pixmap->drawable.width;
channel->scale[1] = 1.f/pixmap->drawable.height;
channel->offset[0] = 0;
channel->offset[1] = 0;
channel->pict_format = sna_format_for_depth(pixmap->drawable.depth);
channel->bo = bo;
channel->is_affine = 1;
}
static void
gen2_emit_copy_pipeline(struct sna *sna, const struct sna_composite_op *op)
{
uint32_t blend, unwind;
unwind = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_2 |
LOAD_TEXTURE_BLEND_STAGE(0) | 1);
blend = TB0C_LAST_STAGE | TB0C_RESULT_SCALE_1X | TB0C_OP_ARG1 |
TB0C_OUTPUT_WRITE_CURRENT;
if (op->dst.format == PICT_a8)
blend |= TB0C_ARG1_REPLICATE_ALPHA;
else if (PICT_FORMAT_RGB(op->src.pict_format) != 0)
blend |= TB0C_ARG1_SEL_TEXEL0;
else
blend |= TB0C_ARG1_SEL_ONE | TB0C_ARG1_INVERT; /* 0.0 */
BATCH(blend);
blend = TB0A_RESULT_SCALE_1X | TB0A_OP_ARG1 |
TB0A_OUTPUT_WRITE_CURRENT;
if (PICT_FORMAT_A(op->src.pict_format) == 0)
blend |= TB0A_ARG1_SEL_ONE;
else
blend |= TB0A_ARG1_SEL_TEXEL0;
BATCH(blend);
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls2 + 1,
sna->kgem.batch + unwind + 1,
2 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = unwind;
else
sna->render_state.gen2.ls2 = unwind;
}
static void gen2_emit_copy_state(struct sna *sna, const struct sna_composite_op *op)
{
uint32_t ls1, v;
gen2_get_batch(sna, op);
if (kgem_bo_is_dirty(op->src.bo)) {
if (op->src.bo == op->dst.bo)
BATCH(MI_FLUSH | MI_INVALIDATE_MAP_CACHE);
else
BATCH(_3DSTATE_MODES_5_CMD |
PIPELINE_FLUSH_RENDER_CACHE |
PIPELINE_FLUSH_TEXTURE_CACHE);
kgem_clear_dirty(&sna->kgem);
}
gen2_emit_target(sna, op);
ls1 = sna->kgem.nbatch;
BATCH(_3DSTATE_LOAD_STATE_IMMEDIATE_1 |
I1_LOAD_S(2) | I1_LOAD_S(3) | I1_LOAD_S(8) | 2);
BATCH(1<<12);
BATCH(S3_CULLMODE_NONE | S3_VERTEXHAS_XY);
BATCH(S8_ENABLE_COLOR_BUFFER_WRITE);
if (memcmp(sna->kgem.batch + sna->render_state.gen2.ls1 + 1,
sna->kgem.batch + ls1 + 1,
3 * sizeof(uint32_t)) == 0)
sna->kgem.nbatch = ls1;
else
sna->render_state.gen2.ls1 = ls1;
gen2_enable_logic_op(sna, op->op);
gen2_emit_copy_pipeline(sna, op);
v = _3DSTATE_VERTEX_FORMAT_2_CMD | TEXCOORDFMT_2D;
if (sna->render_state.gen2.vft != v) {
BATCH(v);
sna->render_state.gen2.vft = v;
}
gen2_emit_texture(sna, &op->src, 0);
}
static bool
gen2_render_copy_boxes(struct sna *sna, uint8_t alu,
PixmapPtr src, struct kgem_bo *src_bo, int16_t src_dx, int16_t src_dy,
PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy,
const BoxRec *box, int n, unsigned flags)
{
struct sna_composite_op tmp;
#if NO_COPY_BOXES
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return false;
return sna_blt_copy_boxes(sna, alu,
src_bo, src_dx, src_dy,
dst_bo, dst_dx, dst_dy,
dst->drawable.bitsPerPixel,
box, n);
#endif
DBG(("%s (%d, %d)->(%d, %d) x %d\n",
__FUNCTION__, src_dx, src_dy, dst_dx, dst_dy, n));
if (prefer_blt_copy(sna, flags) &&
sna_blt_compare_depth(&src->drawable, &dst->drawable) &&
sna_blt_copy_boxes(sna, alu,
src_bo, src_dx, src_dy,
dst_bo, dst_dx, dst_dy,
dst->drawable.bitsPerPixel,
box, n))
return true;
if (src_bo == dst_bo || /* XXX handle overlap using 3D ? */
too_large(src->drawable.width, src->drawable.height) ||
src_bo->pitch > MAX_3D_PITCH || dst_bo->pitch < 8) {
fallback:
return sna_blt_copy_boxes_fallback(sna, alu,
src, src_bo, src_dx, src_dy,
dst, dst_bo, dst_dx, dst_dy,
box, n);
}
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL))
goto fallback;
}
memset(&tmp, 0, sizeof(tmp));
tmp.op = alu;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp.dst.bo = dst_bo;
tmp.dst.x = tmp.dst.y = 0;
tmp.damage = NULL;
sna_render_composite_redirect_init(&tmp);
if (too_large(tmp.dst.width, tmp.dst.height) ||
dst_bo->pitch > MAX_3D_PITCH) {
BoxRec extents = box[0];
int i;
for (i = 1; i < n; i++) {
if (box[i].x1 < extents.x1)
extents.x1 = box[i].x1;
if (box[i].y1 < extents.y1)
extents.y1 = box[i].y1;
if (box[i].x2 > extents.x2)
extents.x2 = box[i].x2;
if (box[i].y2 > extents.y2)
extents.y2 = box[i].y2;
}
if (!sna_render_composite_redirect(sna, &tmp,
extents.x1 + dst_dx,
extents.y1 + dst_dy,
extents.x2 - extents.x1,
extents.y2 - extents.y1))
goto fallback_tiled;
}
tmp.floats_per_vertex = 4;
tmp.floats_per_rect = 12;
dst_dx += tmp.dst.x;
dst_dy += tmp.dst.y;
tmp.dst.x = tmp.dst.y = 0;
gen2_render_copy_setup_source(&tmp.src, src, src_bo);
gen2_emit_copy_state(sna, &tmp);
do {
int n_this_time;
n_this_time = gen2_get_rectangles(sna, &tmp, n);
if (n_this_time == 0) {
gen2_emit_copy_state(sna, &tmp);
n_this_time = gen2_get_rectangles(sna, &tmp, n);
}
n -= n_this_time;
do {
DBG((" (%d, %d) -> (%d, %d) + (%d, %d)\n",
box->x1 + src_dx, box->y1 + src_dy,
box->x1 + dst_dx, box->y1 + dst_dy,
box->x2 - box->x1, box->y2 - box->y1));
VERTEX(box->x2 + dst_dx);
VERTEX(box->y2 + dst_dy);
VERTEX((box->x2 + src_dx) * tmp.src.scale[0]);
VERTEX((box->y2 + src_dy) * tmp.src.scale[1]);
VERTEX(box->x1 + dst_dx);
VERTEX(box->y2 + dst_dy);
VERTEX((box->x1 + src_dx) * tmp.src.scale[0]);
VERTEX((box->y2 + src_dy) * tmp.src.scale[1]);
VERTEX(box->x1 + dst_dx);
VERTEX(box->y1 + dst_dy);
VERTEX((box->x1 + src_dx) * tmp.src.scale[0]);
VERTEX((box->y1 + src_dy) * tmp.src.scale[1]);
box++;
} while (--n_this_time);
} while (n);
gen2_vertex_flush(sna, &tmp);
sna_render_composite_redirect_done(sna, &tmp);
return true;
fallback_tiled:
return sna_tiling_copy_boxes(sna, alu,
src, src_bo, src_dx, src_dy,
dst, dst_bo, dst_dx, dst_dy,
box, n);
}
static void
gen2_render_copy_blt(struct sna *sna,
const struct sna_copy_op *op,
int16_t sx, int16_t sy,
int16_t w, int16_t h,
int16_t dx, int16_t dy)
{
if (!gen2_get_rectangles(sna, &op->base, 1)) {
gen2_emit_copy_state(sna, &op->base);
gen2_get_rectangles(sna, &op->base, 1);
}
VERTEX(dx+w);
VERTEX(dy+h);
VERTEX((sx+w)*op->base.src.scale[0]);
VERTEX((sy+h)*op->base.src.scale[1]);
VERTEX(dx);
VERTEX(dy+h);
VERTEX(sx*op->base.src.scale[0]);
VERTEX((sy+h)*op->base.src.scale[1]);
VERTEX(dx);
VERTEX(dy);
VERTEX(sx*op->base.src.scale[0]);
VERTEX(sy*op->base.src.scale[1]);
}
static void
gen2_render_copy_done(struct sna *sna, const struct sna_copy_op *op)
{
gen2_vertex_flush(sna, &op->base);
}
static bool
gen2_render_copy(struct sna *sna, uint8_t alu,
PixmapPtr src, struct kgem_bo *src_bo,
PixmapPtr dst, struct kgem_bo *dst_bo,
struct sna_copy_op *tmp)
{
#if NO_COPY
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return false;
return sna_blt_copy(sna, alu,
src_bo, dst_bo,
dst->drawable.bitsPerPixel,
tmp);
#endif
/* Prefer to use the BLT */
if (prefer_blt_copy(sna, 0) &&
sna_blt_compare_depth(&src->drawable, &dst->drawable) &&
sna_blt_copy(sna, alu,
src_bo, dst_bo,
dst->drawable.bitsPerPixel,
tmp))
return true;
/* Must use the BLT if we can't RENDER... */
if (too_large(src->drawable.width, src->drawable.height) ||
too_large(dst->drawable.width, dst->drawable.height) ||
src_bo->pitch > MAX_3D_PITCH ||
dst_bo->pitch < 8 || dst_bo->pitch > MAX_3D_PITCH) {
fallback:
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return false;
return sna_blt_copy(sna, alu, src_bo, dst_bo,
dst->drawable.bitsPerPixel,
tmp);
}
tmp->base.op = alu;
tmp->base.dst.pixmap = dst;
tmp->base.dst.width = dst->drawable.width;
tmp->base.dst.height = dst->drawable.height;
tmp->base.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp->base.dst.bo = dst_bo;
gen2_render_copy_setup_source(&tmp->base.src, src, src_bo);
tmp->base.mask.bo = NULL;
tmp->base.floats_per_vertex = 4;
tmp->base.floats_per_rect = 12;
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL))
goto fallback;
}
tmp->blt = gen2_render_copy_blt;
tmp->done = gen2_render_copy_done;
gen2_emit_composite_state(sna, &tmp->base);
return true;
}
static void
gen2_render_reset(struct sna *sna)
{
sna->render_state.gen2.need_invariant = true;
sna->render_state.gen2.logic_op_enabled = 0;
sna->render_state.gen2.vertex_offset = 0;
sna->render_state.gen2.target = 0;
sna->render_state.gen2.ls1 = 0;
sna->render_state.gen2.ls2 = 0;
sna->render_state.gen2.vft = 0;
sna->render_state.gen2.diffuse = 0x0c0ffee0;
sna->render_state.gen2.specular = 0x0c0ffee0;
}
static void
gen2_render_flush(struct sna *sna)
{
assert(sna->render.vertex_index == 0);
}
static void
gen2_render_context_switch(struct kgem *kgem,
int new_mode)
{
struct sna *sna = container_of(kgem, struct sna, kgem);
if (!kgem->mode)
return;
/* Reload BLT registers following a lost context */
sna->blt_state.fill_bo = 0;
if (kgem_is_idle(kgem)) {
DBG(("%s: GPU idle, flushing\n", __FUNCTION__));
_kgem_submit(kgem);
}
}
bool gen2_render_init(struct sna *sna)
{
struct sna_render *render = &sna->render;
sna->kgem.context_switch = gen2_render_context_switch;
/* Use the BLT (and overlay) for everything except when forced to
* use the texture combiners.
*/
#if !NO_COMPOSITE
render->composite = gen2_render_composite;
#endif
#if !NO_COMPOSITE_SPANS
render->check_composite_spans = gen2_check_composite_spans;
render->composite_spans = gen2_render_composite_spans;
#endif
render->fill_boxes = gen2_render_fill_boxes;
render->fill = gen2_render_fill;
render->fill_one = gen2_render_fill_one;
render->copy = gen2_render_copy;
render->copy_boxes = gen2_render_copy_boxes;
/* XXX YUV color space conversion for video? */
render->reset = gen2_render_reset;
render->flush = gen2_render_flush;
render->max_3d_size = MAX_3D_SIZE;
render->max_3d_pitch = MAX_3D_PITCH;
return true;
}