xf86-video-intel/src/sna/gen4_render.c

3816 lines
102 KiB
C

/*
* Copyright © 2006,2008,2011 Intel Corporation
* Copyright © 2007 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Wang Zhenyu <zhenyu.z.wang@sna.com>
* Eric Anholt <eric@anholt.net>
* Carl Worth <cworth@redhat.com>
* Keith Packard <keithp@keithp.com>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sna.h"
#include "sna_reg.h"
#include "sna_render.h"
#include "sna_render_inline.h"
#include "sna_video.h"
#include "gen4_render.h"
/* gen4 has a serious issue with its shaders that we need to flush
* after every rectangle... So until that is resolved, prefer
* the BLT engine.
*/
#define PREFER_BLT 1
#define FLUSH_EVERY_VERTEX 1
#define NO_COMPOSITE 0
#define NO_COMPOSITE_SPANS 0
#define NO_COPY 0
#define NO_COPY_BOXES 0
#define NO_FILL 0
#define NO_FILL_BOXES 0
#if FLUSH_EVERY_VERTEX
#define FLUSH(OP) do { \
gen4_vertex_flush(sna); \
gen4_magic_ca_pass(sna, OP); \
OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH); \
} while (0)
#define FLUSH_NOCA() do { \
gen4_vertex_flush(sna); \
OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH); \
} while (0)
#else
#define FLUSH(OP)
#define FLUSH_NOCA()
#endif
#define GEN4_GRF_BLOCKS(nreg) ((nreg + 15) / 16 - 1)
/* Set up a default static partitioning of the URB, which is supposed to
* allow anything we would want to do, at potentially lower performance.
*/
#define URB_CS_ENTRY_SIZE 1
#define URB_CS_ENTRIES 0
#define URB_VS_ENTRY_SIZE 1 // each 512-bit row
#define URB_VS_ENTRIES 8 // we needs at least 8 entries
#define URB_GS_ENTRY_SIZE 0
#define URB_GS_ENTRIES 0
#define URB_CLIP_ENTRY_SIZE 0
#define URB_CLIP_ENTRIES 0
#define URB_SF_ENTRY_SIZE 2
#define URB_SF_ENTRIES 1
/*
* this program computes dA/dx and dA/dy for the texture coordinates along
* with the base texture coordinate. It was extracted from the Mesa driver
*/
#define SF_KERNEL_NUM_GRF 16
#define SF_MAX_THREADS 2
#define PS_KERNEL_NUM_GRF 32
#define PS_MAX_THREADS 48
static const uint32_t sf_kernel[][4] = {
#include "exa_sf.g4b"
};
static const uint32_t sf_kernel_mask[][4] = {
#include "exa_sf_mask.g4b"
};
static const uint32_t ps_kernel_nomask_affine[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_nomask_projective[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_maskca_affine[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_affine.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_maskca_projective[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_projective.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_maskca_srcalpha_affine[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_a.g4b"
#include "exa_wm_mask_affine.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca_srcalpha.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_maskca_srcalpha_projective[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_a.g4b"
#include "exa_wm_mask_projective.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca_srcalpha.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_masknoca_affine[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_affine.g4b"
#include "exa_wm_mask_sample_a.g4b"
#include "exa_wm_noca.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_masknoca_projective[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_projective.g4b"
#include "exa_wm_mask_sample_a.g4b"
#include "exa_wm_noca.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_packed_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_yuv_rgb.g4b"
#include "exa_wm_write.g4b"
};
static const uint32_t ps_kernel_planar_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_planar.g4b"
#include "exa_wm_yuv_rgb.g4b"
#include "exa_wm_write.g4b"
};
#define KERNEL(kernel_enum, kernel, masked) \
[kernel_enum] = {&kernel, sizeof(kernel), masked}
static const struct wm_kernel_info {
const void *data;
unsigned int size;
bool has_mask;
} wm_kernels[] = {
KERNEL(WM_KERNEL, ps_kernel_nomask_affine, false),
KERNEL(WM_KERNEL_PROJECTIVE, ps_kernel_nomask_projective, false),
KERNEL(WM_KERNEL_MASK, ps_kernel_masknoca_affine, true),
KERNEL(WM_KERNEL_MASK_PROJECTIVE, ps_kernel_masknoca_projective, true),
KERNEL(WM_KERNEL_MASKCA, ps_kernel_maskca_affine, true),
KERNEL(WM_KERNEL_MASKCA_PROJECTIVE, ps_kernel_maskca_projective, true),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA,
ps_kernel_maskca_srcalpha_affine, true),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE,
ps_kernel_maskca_srcalpha_projective, true),
KERNEL(WM_KERNEL_VIDEO_PLANAR, ps_kernel_planar_static, false),
KERNEL(WM_KERNEL_VIDEO_PACKED, ps_kernel_packed_static, false),
};
#undef KERNEL
static const struct blendinfo {
bool src_alpha;
uint32_t src_blend;
uint32_t dst_blend;
} gen4_blend_op[] = {
/* Clear */ {0, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_ZERO},
/* Src */ {0, GEN4_BLENDFACTOR_ONE, GEN4_BLENDFACTOR_ZERO},
/* Dst */ {0, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_ONE},
/* Over */ {1, GEN4_BLENDFACTOR_ONE, GEN4_BLENDFACTOR_INV_SRC_ALPHA},
/* OverReverse */ {0, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_ONE},
/* In */ {0, GEN4_BLENDFACTOR_DST_ALPHA, GEN4_BLENDFACTOR_ZERO},
/* InReverse */ {1, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_SRC_ALPHA},
/* Out */ {0, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_ZERO},
/* OutReverse */ {1, GEN4_BLENDFACTOR_ZERO, GEN4_BLENDFACTOR_INV_SRC_ALPHA},
/* Atop */ {1, GEN4_BLENDFACTOR_DST_ALPHA, GEN4_BLENDFACTOR_INV_SRC_ALPHA},
/* AtopReverse */ {1, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_SRC_ALPHA},
/* Xor */ {1, GEN4_BLENDFACTOR_INV_DST_ALPHA, GEN4_BLENDFACTOR_INV_SRC_ALPHA},
/* Add */ {0, GEN4_BLENDFACTOR_ONE, GEN4_BLENDFACTOR_ONE},
};
/**
* Highest-valued BLENDFACTOR used in gen4_blend_op.
*
* This leaves out GEN4_BLENDFACTOR_INV_DST_COLOR,
* GEN4_BLENDFACTOR_INV_CONST_{COLOR,ALPHA},
* GEN4_BLENDFACTOR_INV_SRC1_{COLOR,ALPHA}
*/
#define GEN4_BLENDFACTOR_COUNT (GEN4_BLENDFACTOR_INV_DST_ALPHA + 1)
#define BLEND_OFFSET(s, d) \
(((s) * GEN4_BLENDFACTOR_COUNT + (d)) * 64)
#define SAMPLER_OFFSET(sf, se, mf, me, k) \
((((((sf) * EXTEND_COUNT + (se)) * FILTER_COUNT + (mf)) * EXTEND_COUNT + (me)) * KERNEL_COUNT + (k)) * 64)
static void
gen4_emit_pipelined_pointers(struct sna *sna,
const struct sna_composite_op *op,
int blend, int kernel);
#define OUT_BATCH(v) batch_emit(sna, v)
#define OUT_VERTEX(x,y) vertex_emit_2s(sna, x,y)
#define OUT_VERTEX_F(v) vertex_emit(sna, v)
#define GEN4_MAX_3D_SIZE 8192
static inline bool too_large(int width, int height)
{
return width > GEN4_MAX_3D_SIZE || height > GEN4_MAX_3D_SIZE;
}
static int
gen4_choose_composite_kernel(int op, bool has_mask, bool is_ca, bool is_affine)
{
int base;
if (has_mask) {
if (is_ca) {
if (gen4_blend_op[op].src_alpha)
base = WM_KERNEL_MASKCA_SRCALPHA;
else
base = WM_KERNEL_MASKCA;
} else
base = WM_KERNEL_MASK;
} else
base = WM_KERNEL;
return base + !is_affine;
}
static void gen4_magic_ca_pass(struct sna *sna,
const struct sna_composite_op *op)
{
struct gen4_render_state *state = &sna->render_state.gen4;
if (!op->need_magic_ca_pass)
return;
DBG(("%s: CA fixup\n", __FUNCTION__));
assert(op->mask.bo != NULL);
assert(op->has_component_alpha);
if (FLUSH_EVERY_VERTEX)
OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH);
gen4_emit_pipelined_pointers(sna, op, PictOpAdd,
gen4_choose_composite_kernel(PictOpAdd,
true, true, op->is_affine));
OUT_BATCH(GEN4_3DPRIMITIVE |
GEN4_3DPRIMITIVE_VERTEX_SEQUENTIAL |
(_3DPRIM_RECTLIST << GEN4_3DPRIMITIVE_TOPOLOGY_SHIFT) |
(0 << 9) |
4);
OUT_BATCH(sna->render.vertex_index - sna->render.vertex_start);
OUT_BATCH(sna->render.vertex_start);
OUT_BATCH(1); /* single instance */
OUT_BATCH(0); /* start instance location */
OUT_BATCH(0); /* index buffer offset, ignored */
state->last_primitive = sna->kgem.nbatch;
}
static void gen4_vertex_flush(struct sna *sna)
{
assert(sna->render_state.gen4.vertex_offset);
DBG(("%s[%x] = %d\n", __FUNCTION__,
4*sna->render_state.gen4.vertex_offset,
sna->render.vertex_index - sna->render.vertex_start));
sna->kgem.batch[sna->render_state.gen4.vertex_offset] =
sna->render.vertex_index - sna->render.vertex_start;
sna->render_state.gen4.vertex_offset = 0;
}
static int gen4_vertex_finish(struct sna *sna)
{
struct kgem_bo *bo;
unsigned int i;
assert(sna->render.vertex_used);
/* Note: we only need dword alignment (currently) */
bo = sna->render.vbo;
if (bo) {
if (sna->render_state.gen4.vertex_offset)
gen4_vertex_flush(sna);
for (i = 0; i < ARRAY_SIZE(sna->render.vertex_reloc); i++) {
if (sna->render.vertex_reloc[i]) {
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
i, sna->render.vertex_reloc[i]));
sna->kgem.batch[sna->render.vertex_reloc[i]] =
kgem_add_reloc(&sna->kgem,
sna->render.vertex_reloc[i],
bo,
I915_GEM_DOMAIN_VERTEX << 16,
0);
sna->render.vertex_reloc[i] = 0;
}
}
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
sna->render_state.gen4.vb_id = 0;
kgem_bo_destroy(&sna->kgem, bo);
}
sna->render.vertices = NULL;
sna->render.vbo = kgem_create_linear(&sna->kgem,
256*1024, CREATE_GTT_MAP);
if (sna->render.vbo)
sna->render.vertices = kgem_bo_map(&sna->kgem, sna->render.vbo);
if (sna->render.vertices == NULL) {
if (sna->render.vbo)
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
sna->render.vbo = NULL;
return 0;
}
if (sna->render.vertex_used) {
memcpy(sna->render.vertices,
sna->render.vertex_data,
sizeof(float)*sna->render.vertex_used);
}
sna->render.vertex_size = 64 * 1024 - 1;
return sna->render.vertex_size - sna->render.vertex_used;
}
static void gen4_vertex_close(struct sna *sna)
{
struct kgem_bo *bo, *free_bo = NULL;
unsigned int i, delta = 0;
assert(sna->render_state.gen4.vertex_offset == 0);
DBG(("%s: used=%d, vbo active? %d\n",
__FUNCTION__, sna->render.vertex_used, sna->render.vbo != NULL));
if (!sna->render.vertex_used)
return;
bo = sna->render.vbo;
if (bo) {
if (sna->render.vertex_size - sna->render.vertex_used < 64) {
DBG(("%s: discarding full vbo\n", __FUNCTION__));
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
} else if (IS_CPU_MAP(bo->map)) {
DBG(("%s: converting CPU map to GTT\n", __FUNCTION__));
sna->render.vertices =
kgem_bo_map__gtt(&sna->kgem, sna->render.vbo);
if (sna->render.vertices == NULL) {
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
free_bo = bo;
}
}
} else {
if (sna->kgem.nbatch + sna->render.vertex_used <= sna->kgem.surface) {
DBG(("%s: copy to batch: %d @ %d\n", __FUNCTION__,
sna->render.vertex_used, sna->kgem.nbatch));
memcpy(sna->kgem.batch + sna->kgem.nbatch,
sna->render.vertex_data,
sna->render.vertex_used * 4);
delta = sna->kgem.nbatch * 4;
bo = NULL;
sna->kgem.nbatch += sna->render.vertex_used;
} else {
bo = kgem_create_linear(&sna->kgem,
4*sna->render.vertex_used, 0);
if (bo && !kgem_bo_write(&sna->kgem, bo,
sna->render.vertex_data,
4*sna->render.vertex_used)) {
kgem_bo_destroy(&sna->kgem, bo);
bo = NULL;
}
DBG(("%s: new vbo: %d\n", __FUNCTION__,
sna->render.vertex_used));
free_bo = bo;
}
}
for (i = 0; i < ARRAY_SIZE(sna->render.vertex_reloc); i++) {
if (sna->render.vertex_reloc[i]) {
DBG(("%s: reloc[%d] = %d\n", __FUNCTION__,
i, sna->render.vertex_reloc[i]));
sna->kgem.batch[sna->render.vertex_reloc[i]] =
kgem_add_reloc(&sna->kgem,
sna->render.vertex_reloc[i],
bo,
I915_GEM_DOMAIN_VERTEX << 16,
delta);
sna->render.vertex_reloc[i] = 0;
}
}
if (sna->render.vbo == NULL) {
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
}
if (free_bo)
kgem_bo_destroy(&sna->kgem, free_bo);
}
static uint32_t gen4_get_blend(int op,
bool has_component_alpha,
uint32_t dst_format)
{
uint32_t src, dst;
src = gen4_blend_op[op].src_blend;
dst = gen4_blend_op[op].dst_blend;
/* If there's no dst alpha channel, adjust the blend op so that we'll treat
* it as always 1.
*/
if (PICT_FORMAT_A(dst_format) == 0) {
if (src == GEN4_BLENDFACTOR_DST_ALPHA)
src = GEN4_BLENDFACTOR_ONE;
else if (src == GEN4_BLENDFACTOR_INV_DST_ALPHA)
src = GEN4_BLENDFACTOR_ZERO;
}
/* If the source alpha is being used, then we should only be in a
* case where the source blend factor is 0, and the source blend
* value is the mask channels multiplied by the source picture's alpha.
*/
if (has_component_alpha && gen4_blend_op[op].src_alpha) {
if (dst == GEN4_BLENDFACTOR_SRC_ALPHA)
dst = GEN4_BLENDFACTOR_SRC_COLOR;
else if (dst == GEN4_BLENDFACTOR_INV_SRC_ALPHA)
dst = GEN4_BLENDFACTOR_INV_SRC_COLOR;
}
DBG(("blend op=%d, dst=%x [A=%d] => src=%d, dst=%d => offset=%x\n",
op, dst_format, PICT_FORMAT_A(dst_format),
src, dst, BLEND_OFFSET(src, dst)));
return BLEND_OFFSET(src, dst);
}
static uint32_t gen4_get_card_format(PictFormat format)
{
switch (format) {
default:
return -1;
case PICT_a8r8g8b8:
return GEN4_SURFACEFORMAT_B8G8R8A8_UNORM;
case PICT_x8r8g8b8:
return GEN4_SURFACEFORMAT_B8G8R8X8_UNORM;
case PICT_a8b8g8r8:
return GEN4_SURFACEFORMAT_R8G8B8A8_UNORM;
case PICT_x8b8g8r8:
return GEN4_SURFACEFORMAT_R8G8B8X8_UNORM;
case PICT_a2r10g10b10:
return GEN4_SURFACEFORMAT_B10G10R10A2_UNORM;
case PICT_x2r10g10b10:
return GEN4_SURFACEFORMAT_B10G10R10X2_UNORM;
case PICT_r8g8b8:
return GEN4_SURFACEFORMAT_R8G8B8_UNORM;
case PICT_r5g6b5:
return GEN4_SURFACEFORMAT_B5G6R5_UNORM;
case PICT_a1r5g5b5:
return GEN4_SURFACEFORMAT_B5G5R5A1_UNORM;
case PICT_a8:
return GEN4_SURFACEFORMAT_A8_UNORM;
case PICT_a4r4g4b4:
return GEN4_SURFACEFORMAT_B4G4R4A4_UNORM;
}
}
static uint32_t gen4_get_dest_format(PictFormat format)
{
switch (format) {
default:
return -1;
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
return GEN4_SURFACEFORMAT_B8G8R8A8_UNORM;
case PICT_a8b8g8r8:
case PICT_x8b8g8r8:
return GEN4_SURFACEFORMAT_R8G8B8A8_UNORM;
case PICT_a2r10g10b10:
case PICT_x2r10g10b10:
return GEN4_SURFACEFORMAT_B10G10R10A2_UNORM;
case PICT_r5g6b5:
return GEN4_SURFACEFORMAT_B5G6R5_UNORM;
case PICT_x1r5g5b5:
case PICT_a1r5g5b5:
return GEN4_SURFACEFORMAT_B5G5R5A1_UNORM;
case PICT_a8:
return GEN4_SURFACEFORMAT_A8_UNORM;
case PICT_a4r4g4b4:
case PICT_x4r4g4b4:
return GEN4_SURFACEFORMAT_B4G4R4A4_UNORM;
}
}
static bool gen4_check_dst_format(PictFormat format)
{
if (gen4_get_dest_format(format) != -1)
return true;
DBG(("%s: unhandled format: %x\n", __FUNCTION__, (int)format));
return false;
}
static bool gen4_check_format(uint32_t format)
{
if (gen4_get_card_format(format) != -1)
return true;
DBG(("%s: unhandled format: %x\n", __FUNCTION__, (int)format));
return false;
}
typedef struct gen4_surface_state_padded {
struct gen4_surface_state state;
char pad[32 - sizeof(struct gen4_surface_state)];
} gen4_surface_state_padded;
static void null_create(struct sna_static_stream *stream)
{
/* A bunch of zeros useful for legacy border color and depth-stencil */
sna_static_stream_map(stream, 64, 64);
}
static void
sampler_state_init(struct gen4_sampler_state *sampler_state,
sampler_filter_t filter,
sampler_extend_t extend)
{
sampler_state->ss0.lod_preclamp = 1; /* GL mode */
/* We use the legacy mode to get the semantics specified by
* the Render extension. */
sampler_state->ss0.border_color_mode = GEN4_BORDER_COLOR_MODE_LEGACY;
switch (filter) {
default:
case SAMPLER_FILTER_NEAREST:
sampler_state->ss0.min_filter = GEN4_MAPFILTER_NEAREST;
sampler_state->ss0.mag_filter = GEN4_MAPFILTER_NEAREST;
break;
case SAMPLER_FILTER_BILINEAR:
sampler_state->ss0.min_filter = GEN4_MAPFILTER_LINEAR;
sampler_state->ss0.mag_filter = GEN4_MAPFILTER_LINEAR;
break;
}
switch (extend) {
default:
case SAMPLER_EXTEND_NONE:
sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_CLAMP_BORDER;
break;
case SAMPLER_EXTEND_REPEAT:
sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_WRAP;
sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_WRAP;
sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_WRAP;
break;
case SAMPLER_EXTEND_PAD:
sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_CLAMP;
sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_CLAMP;
sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_CLAMP;
break;
case SAMPLER_EXTEND_REFLECT:
sampler_state->ss1.r_wrap_mode = GEN4_TEXCOORDMODE_MIRROR;
sampler_state->ss1.s_wrap_mode = GEN4_TEXCOORDMODE_MIRROR;
sampler_state->ss1.t_wrap_mode = GEN4_TEXCOORDMODE_MIRROR;
break;
}
}
static uint32_t gen4_filter(uint32_t filter)
{
switch (filter) {
default:
assert(0);
case PictFilterNearest:
return SAMPLER_FILTER_NEAREST;
case PictFilterBilinear:
return SAMPLER_FILTER_BILINEAR;
}
}
static uint32_t gen4_check_filter(PicturePtr picture)
{
switch (picture->filter) {
case PictFilterNearest:
case PictFilterBilinear:
return true;
default:
DBG(("%s: unknown filter: %s [%d]\n",
__FUNCTION__,
PictureGetFilterName(picture->filter),
picture->filter));
return false;
}
}
static uint32_t gen4_repeat(uint32_t repeat)
{
switch (repeat) {
default:
assert(0);
case RepeatNone:
return SAMPLER_EXTEND_NONE;
case RepeatNormal:
return SAMPLER_EXTEND_REPEAT;
case RepeatPad:
return SAMPLER_EXTEND_PAD;
case RepeatReflect:
return SAMPLER_EXTEND_REFLECT;
}
}
static bool gen4_check_repeat(PicturePtr picture)
{
if (!picture->repeat)
return true;
switch (picture->repeatType) {
case RepeatNone:
case RepeatNormal:
case RepeatPad:
case RepeatReflect:
return true;
default:
DBG(("%s: unknown repeat: %d\n",
__FUNCTION__, picture->repeatType));
return false;
}
}
/**
* Sets up the common fields for a surface state buffer for the given
* picture in the given surface state buffer.
*/
static uint32_t
gen4_bind_bo(struct sna *sna,
struct kgem_bo *bo,
uint32_t width,
uint32_t height,
uint32_t format,
bool is_dst)
{
struct gen4_surface_state *ss;
uint32_t domains;
uint16_t offset;
assert(!kgem_bo_is_vmap(bo));
/* After the first bind, we manage the cache domains within the batch */
if (is_dst) {
domains = I915_GEM_DOMAIN_RENDER << 16 | I915_GEM_DOMAIN_RENDER;
kgem_bo_mark_dirty(&sna->kgem, bo);
} else
domains = I915_GEM_DOMAIN_SAMPLER << 16;
offset = kgem_bo_get_binding(bo, format);
if (offset)
return offset * sizeof(uint32_t);
offset = sna->kgem.surface -=
sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t);
ss = memset(sna->kgem.batch + offset, 0, sizeof(*ss));
ss->ss0.surface_type = GEN4_SURFACE_2D;
ss->ss0.surface_format = format;
ss->ss0.data_return_format = GEN4_SURFACERETURNFORMAT_FLOAT32;
ss->ss0.color_blend = 1;
ss->ss1.base_addr =
kgem_add_reloc(&sna->kgem, offset + 1, bo, domains, 0);
ss->ss2.height = height - 1;
ss->ss2.width = width - 1;
ss->ss3.pitch = bo->pitch - 1;
ss->ss3.tiled_surface = bo->tiling != I915_TILING_NONE;
ss->ss3.tile_walk = bo->tiling == I915_TILING_Y;
kgem_bo_set_binding(bo, format, offset);
DBG(("[%x] bind bo(handle=%d, addr=%d), format=%d, width=%d, height=%d, pitch=%d, tiling=%d -> %s\n",
offset, bo->handle, ss->ss1.base_addr,
ss->ss0.surface_format, width, height, bo->pitch, bo->tiling,
domains & 0xffff ? "render" : "sampler"));
return offset * sizeof(uint32_t);
}
fastcall static void
gen4_emit_composite_primitive_solid(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float *v;
union {
struct sna_coordinate p;
float f;
} dst;
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 9;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = 1.;
v[2] = 1.;
dst.p.x = r->dst.x;
v[3] = dst.f;
v[4] = 0.;
v[5] = 1.;
dst.p.y = r->dst.y;
v[6] = dst.f;
v[7] = 0.;
v[8] = 0.;
}
fastcall static void
gen4_emit_composite_primitive_identity_source(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
const float *sf = op->src.scale;
float sx, sy, *v;
union {
struct sna_coordinate p;
float f;
} dst;
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 9;
sx = r->src.x + op->src.offset[0];
sy = r->src.y + op->src.offset[1];
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = (sx + r->width) * sf[0];
v[2] = (sy + r->height) * sf[1];
dst.p.x = r->dst.x;
v[3] = dst.f;
v[4] = sx * sf[0];
v[5] = v[2];
dst.p.y = r->dst.y;
v[6] = dst.f;
v[7] = v[4];
v[8] = sy * sf[1];
}
fastcall static void
gen4_emit_composite_primitive_affine_source(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float *v;
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 9;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
_sna_get_transformed_coordinates(op->src.offset[0] + r->src.x + r->width,
op->src.offset[1] + r->src.y + r->height,
op->src.transform,
&v[1], &v[2]);
v[1] *= op->src.scale[0];
v[2] *= op->src.scale[1];
dst.p.x = r->dst.x;
v[3] = dst.f;
_sna_get_transformed_coordinates(op->src.offset[0] + r->src.x,
op->src.offset[1] + r->src.y + r->height,
op->src.transform,
&v[4], &v[5]);
v[4] *= op->src.scale[0];
v[5] *= op->src.scale[1];
dst.p.y = r->dst.y;
v[6] = dst.f;
_sna_get_transformed_coordinates(op->src.offset[0] + r->src.x,
op->src.offset[1] + r->src.y,
op->src.transform,
&v[7], &v[8]);
v[7] *= op->src.scale[0];
v[8] *= op->src.scale[1];
}
fastcall static void
gen4_emit_composite_primitive_identity_source_mask(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
union {
struct sna_coordinate p;
float f;
} dst;
float src_x, src_y;
float msk_x, msk_y;
float w, h;
float *v;
src_x = r->src.x + op->src.offset[0];
src_y = r->src.y + op->src.offset[1];
msk_x = r->mask.x + op->mask.offset[0];
msk_y = r->mask.y + op->mask.offset[1];
w = r->width;
h = r->height;
v = sna->render.vertices + sna->render.vertex_used;
sna->render.vertex_used += 15;
dst.p.x = r->dst.x + r->width;
dst.p.y = r->dst.y + r->height;
v[0] = dst.f;
v[1] = (src_x + w) * op->src.scale[0];
v[2] = (src_y + h) * op->src.scale[1];
v[3] = (msk_x + w) * op->mask.scale[0];
v[4] = (msk_y + h) * op->mask.scale[1];
dst.p.x = r->dst.x;
v[5] = dst.f;
v[6] = src_x * op->src.scale[0];
v[7] = v[2];
v[8] = msk_x * op->mask.scale[0];
v[9] = v[4];
dst.p.y = r->dst.y;
v[10] = dst.f;
v[11] = v[6];
v[12] = src_y * op->src.scale[1];
v[13] = v[8];
v[14] = msk_y * op->mask.scale[1];
}
fastcall static void
gen4_emit_composite_primitive(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
float src_x[3], src_y[3], src_w[3], mask_x[3], mask_y[3], mask_w[3];
bool is_affine = op->is_affine;
const float *src_sf = op->src.scale;
const float *mask_sf = op->mask.scale;
if (is_affine) {
sna_get_transformed_coordinates(r->src.x + op->src.offset[0],
r->src.y + op->src.offset[1],
op->src.transform,
&src_x[0],
&src_y[0]);
sna_get_transformed_coordinates(r->src.x + op->src.offset[0],
r->src.y + op->src.offset[1] + r->height,
op->src.transform,
&src_x[1],
&src_y[1]);
sna_get_transformed_coordinates(r->src.x + op->src.offset[0] + r->width,
r->src.y + op->src.offset[1] + r->height,
op->src.transform,
&src_x[2],
&src_y[2]);
} else {
sna_get_transformed_coordinates_3d(r->src.x + op->src.offset[0],
r->src.y + op->src.offset[1],
op->src.transform,
&src_x[0],
&src_y[0],
&src_w[0]);
sna_get_transformed_coordinates_3d(r->src.x + op->src.offset[0],
r->src.y + op->src.offset[1] + r->height,
op->src.transform,
&src_x[1],
&src_y[1],
&src_w[1]);
sna_get_transformed_coordinates_3d(r->src.x + op->src.offset[0] + r->width,
r->src.y + op->src.offset[1] + r->height,
op->src.transform,
&src_x[2],
&src_y[2],
&src_w[2]);
}
if (op->mask.bo) {
if (is_affine) {
sna_get_transformed_coordinates(r->mask.x + op->mask.offset[0],
r->mask.y + op->mask.offset[1],
op->mask.transform,
&mask_x[0],
&mask_y[0]);
sna_get_transformed_coordinates(r->mask.x + op->mask.offset[0],
r->mask.y + op->mask.offset[1] + r->height,
op->mask.transform,
&mask_x[1],
&mask_y[1]);
sna_get_transformed_coordinates(r->mask.x + op->mask.offset[0] + r->width,
r->mask.y + op->mask.offset[1] + r->height,
op->mask.transform,
&mask_x[2],
&mask_y[2]);
} else {
sna_get_transformed_coordinates_3d(r->mask.x + op->mask.offset[0],
r->mask.y + op->mask.offset[1],
op->mask.transform,
&mask_x[0],
&mask_y[0],
&mask_w[0]);
sna_get_transformed_coordinates_3d(r->mask.x + op->mask.offset[0],
r->mask.y + op->mask.offset[1] + r->height,
op->mask.transform,
&mask_x[1],
&mask_y[1],
&mask_w[1]);
sna_get_transformed_coordinates_3d(r->mask.x + op->mask.offset[0] + r->width,
r->mask.y + op->mask.offset[1] + r->height,
op->mask.transform,
&mask_x[2],
&mask_y[2],
&mask_w[2]);
}
}
OUT_VERTEX(r->dst.x + r->width, r->dst.y + r->height);
OUT_VERTEX_F(src_x[2] * src_sf[0]);
OUT_VERTEX_F(src_y[2] * src_sf[1]);
if (!is_affine)
OUT_VERTEX_F(src_w[2]);
if (op->mask.bo) {
OUT_VERTEX_F(mask_x[2] * mask_sf[0]);
OUT_VERTEX_F(mask_y[2] * mask_sf[1]);
if (!is_affine)
OUT_VERTEX_F(mask_w[2]);
}
OUT_VERTEX(r->dst.x, r->dst.y + r->height);
OUT_VERTEX_F(src_x[1] * src_sf[0]);
OUT_VERTEX_F(src_y[1] * src_sf[1]);
if (!is_affine)
OUT_VERTEX_F(src_w[1]);
if (op->mask.bo) {
OUT_VERTEX_F(mask_x[1] * mask_sf[0]);
OUT_VERTEX_F(mask_y[1] * mask_sf[1]);
if (!is_affine)
OUT_VERTEX_F(mask_w[1]);
}
OUT_VERTEX(r->dst.x, r->dst.y);
OUT_VERTEX_F(src_x[0] * src_sf[0]);
OUT_VERTEX_F(src_y[0] * src_sf[1]);
if (!is_affine)
OUT_VERTEX_F(src_w[0]);
if (op->mask.bo) {
OUT_VERTEX_F(mask_x[0] * mask_sf[0]);
OUT_VERTEX_F(mask_y[0] * mask_sf[1]);
if (!is_affine)
OUT_VERTEX_F(mask_w[0]);
}
}
static void gen4_emit_vertex_buffer(struct sna *sna,
const struct sna_composite_op *op)
{
int id = op->u.gen4.ve_id;
OUT_BATCH(GEN4_3DSTATE_VERTEX_BUFFERS | 3);
OUT_BATCH((id << VB0_BUFFER_INDEX_SHIFT) | VB0_VERTEXDATA |
(4*op->floats_per_vertex << VB0_BUFFER_PITCH_SHIFT));
sna->render.vertex_reloc[id] = sna->kgem.nbatch;
OUT_BATCH(0);
OUT_BATCH(0);
OUT_BATCH(0);
sna->render_state.gen4.vb_id |= 1 << id;
}
static void gen4_emit_primitive(struct sna *sna)
{
if (sna->kgem.nbatch == sna->render_state.gen4.last_primitive) {
sna->render_state.gen4.vertex_offset = sna->kgem.nbatch - 5;
return;
}
OUT_BATCH(GEN4_3DPRIMITIVE |
GEN4_3DPRIMITIVE_VERTEX_SEQUENTIAL |
(_3DPRIM_RECTLIST << GEN4_3DPRIMITIVE_TOPOLOGY_SHIFT) |
(0 << 9) |
4);
sna->render_state.gen4.vertex_offset = sna->kgem.nbatch;
OUT_BATCH(0); /* vertex count, to be filled in later */
OUT_BATCH(sna->render.vertex_index);
OUT_BATCH(1); /* single instance */
OUT_BATCH(0); /* start instance location */
OUT_BATCH(0); /* index buffer offset, ignored */
sna->render.vertex_start = sna->render.vertex_index;
sna->render_state.gen4.last_primitive = sna->kgem.nbatch;
}
static bool gen4_rectangle_begin(struct sna *sna,
const struct sna_composite_op *op)
{
int id = op->u.gen4.ve_id;
int ndwords;
/* 7xpipelined pointers + 6xprimitive + 1xflush */
ndwords = op->need_magic_ca_pass? 20 : 6;
if (FLUSH_EVERY_VERTEX)
ndwords += 1;
if ((sna->render_state.gen4.vb_id & (1 << id)) == 0)
ndwords += 5;
if (!kgem_check_batch(&sna->kgem, ndwords))
return false;
if ((sna->render_state.gen4.vb_id & (1 << id)) == 0)
gen4_emit_vertex_buffer(sna, op);
if (sna->render_state.gen4.vertex_offset == 0)
gen4_emit_primitive(sna);
return true;
}
static int gen4_get_rectangles__flush(struct sna *sna,
const struct sna_composite_op *op)
{
if (!kgem_check_batch(&sna->kgem, 25))
return 0;
if (!kgem_check_reloc_and_exec(&sna->kgem, 1))
return 0;
if (op->need_magic_ca_pass && sna->render.vbo)
return 0;
return gen4_vertex_finish(sna);
}
inline static int gen4_get_rectangles(struct sna *sna,
const struct sna_composite_op *op,
int want,
void (*emit_state)(struct sna *sna, const struct sna_composite_op *op))
{
int rem;
start:
rem = vertex_space(sna);
if (rem < 3*op->floats_per_vertex) {
DBG(("flushing vbo for %s: %d < %d\n",
__FUNCTION__, rem, 3*op->floats_per_vertex));
rem = gen4_get_rectangles__flush(sna, op);
if (unlikely(rem == 0))
goto flush;
}
if (unlikely(sna->render_state.gen4.vertex_offset == 0 &&
!gen4_rectangle_begin(sna, op)))
goto flush;
if (want > 1 && want * op->floats_per_vertex*3 > rem)
want = rem / (3*op->floats_per_vertex);
sna->render.vertex_index += 3*want;
return want;
flush:
if (sna->render_state.gen4.vertex_offset) {
gen4_vertex_flush(sna);
gen4_magic_ca_pass(sna, op);
}
_kgem_submit(&sna->kgem);
emit_state(sna, op);
goto start;
}
static uint32_t *gen4_composite_get_binding_table(struct sna *sna,
uint16_t *offset)
{
sna->kgem.surface -=
sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t);
DBG(("%s(%x)\n", __FUNCTION__, 4*sna->kgem.surface));
/* Clear all surplus entries to zero in case of prefetch */
*offset = sna->kgem.surface;
return memset(sna->kgem.batch + sna->kgem.surface,
0, sizeof(struct gen4_surface_state_padded));
}
static void
gen4_emit_urb(struct sna *sna)
{
int urb_vs_start, urb_vs_size;
int urb_gs_start, urb_gs_size;
int urb_clip_start, urb_clip_size;
int urb_sf_start, urb_sf_size;
int urb_cs_start, urb_cs_size;
if (!sna->render_state.gen4.needs_urb)
return;
urb_vs_start = 0;
urb_vs_size = URB_VS_ENTRIES * URB_VS_ENTRY_SIZE;
urb_gs_start = urb_vs_start + urb_vs_size;
urb_gs_size = URB_GS_ENTRIES * URB_GS_ENTRY_SIZE;
urb_clip_start = urb_gs_start + urb_gs_size;
urb_clip_size = URB_CLIP_ENTRIES * URB_CLIP_ENTRY_SIZE;
urb_sf_start = urb_clip_start + urb_clip_size;
urb_sf_size = URB_SF_ENTRIES * URB_SF_ENTRY_SIZE;
urb_cs_start = urb_sf_start + urb_sf_size;
urb_cs_size = URB_CS_ENTRIES * URB_CS_ENTRY_SIZE;
OUT_BATCH(GEN4_URB_FENCE |
UF0_CS_REALLOC |
UF0_SF_REALLOC |
UF0_CLIP_REALLOC |
UF0_GS_REALLOC |
UF0_VS_REALLOC |
1);
OUT_BATCH(((urb_clip_start + urb_clip_size) << UF1_CLIP_FENCE_SHIFT) |
((urb_gs_start + urb_gs_size) << UF1_GS_FENCE_SHIFT) |
((urb_vs_start + urb_vs_size) << UF1_VS_FENCE_SHIFT));
OUT_BATCH(((urb_cs_start + urb_cs_size) << UF2_CS_FENCE_SHIFT) |
((urb_sf_start + urb_sf_size) << UF2_SF_FENCE_SHIFT));
/* Constant buffer state */
OUT_BATCH(GEN4_CS_URB_STATE | 0);
OUT_BATCH((URB_CS_ENTRY_SIZE - 1) << 4 | URB_CS_ENTRIES << 0);
sna->render_state.gen4.needs_urb = false;
}
static void
gen4_emit_state_base_address(struct sna *sna)
{
assert(sna->render_state.gen4.general_bo->proxy == NULL);
OUT_BATCH(GEN4_STATE_BASE_ADDRESS | 4);
OUT_BATCH(kgem_add_reloc(&sna->kgem, /* general */
sna->kgem.nbatch,
sna->render_state.gen4.general_bo,
I915_GEM_DOMAIN_INSTRUCTION << 16,
BASE_ADDRESS_MODIFY));
OUT_BATCH(kgem_add_reloc(&sna->kgem, /* surface */
sna->kgem.nbatch,
NULL,
I915_GEM_DOMAIN_INSTRUCTION << 16,
BASE_ADDRESS_MODIFY));
OUT_BATCH(0); /* media */
/* upper bounds, all disabled */
OUT_BATCH(BASE_ADDRESS_MODIFY);
OUT_BATCH(0);
}
static void
gen4_emit_invariant(struct sna *sna)
{
assert(sna->kgem.surface == sna->kgem.batch_size);
if (sna->kgem.gen >= 45)
OUT_BATCH(NEW_PIPELINE_SELECT | PIPELINE_SELECT_3D);
else
OUT_BATCH(GEN4_PIPELINE_SELECT | PIPELINE_SELECT_3D);
gen4_emit_state_base_address(sna);
sna->render_state.gen4.needs_invariant = false;
}
static void
gen4_get_batch(struct sna *sna)
{
kgem_set_mode(&sna->kgem, KGEM_RENDER);
if (!kgem_check_batch_with_surfaces(&sna->kgem, 150, 4)) {
DBG(("%s: flushing batch: %d < %d+%d\n",
__FUNCTION__, sna->kgem.surface - sna->kgem.nbatch,
150, 4*8));
kgem_submit(&sna->kgem);
_kgem_set_mode(&sna->kgem, KGEM_RENDER);
}
if (sna->render_state.gen4.needs_invariant)
gen4_emit_invariant(sna);
}
static void
gen4_align_vertex(struct sna *sna, const struct sna_composite_op *op)
{
if (op->floats_per_vertex != sna->render_state.gen4.floats_per_vertex) {
if (sna->render.vertex_size - sna->render.vertex_used < 6*op->floats_per_vertex)
gen4_vertex_finish(sna);
DBG(("aligning vertex: was %d, now %d floats per vertex, %d->%d\n",
sna->render_state.gen4.floats_per_vertex,
op->floats_per_vertex,
sna->render.vertex_index,
(sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex));
sna->render.vertex_index = (sna->render.vertex_used + op->floats_per_vertex - 1) / op->floats_per_vertex;
sna->render.vertex_used = sna->render.vertex_index * op->floats_per_vertex;
sna->render_state.gen4.floats_per_vertex = op->floats_per_vertex;
}
}
static void
gen4_emit_binding_table(struct sna *sna, uint16_t offset)
{
if (sna->render_state.gen4.surface_table == offset)
return;
sna->render_state.gen4.surface_table = offset;
/* Binding table pointers */
OUT_BATCH(GEN4_3DSTATE_BINDING_TABLE_POINTERS | 4);
OUT_BATCH(0); /* vs */
OUT_BATCH(0); /* gs */
OUT_BATCH(0); /* clip */
OUT_BATCH(0); /* sf */
/* Only the PS uses the binding table */
OUT_BATCH(offset*4);
}
static void
gen4_emit_pipelined_pointers(struct sna *sna,
const struct sna_composite_op *op,
int blend, int kernel)
{
uint32_t key;
uint16_t sp, bp;
DBG(("%s: has_mask=%d, src=(%d, %d), mask=(%d, %d),kernel=%d, blend=%d, ca=%d, format=%x\n",
__FUNCTION__, op->mask.bo != NULL,
op->src.filter, op->src.repeat,
op->mask.filter, op->mask.repeat,
kernel, blend, op->has_component_alpha, (int)op->dst.format));
sp = SAMPLER_OFFSET(op->src.filter, op->src.repeat,
op->mask.filter, op->mask.repeat,
kernel);
bp = gen4_get_blend(blend, op->has_component_alpha, op->dst.format);
key = op->mask.bo != NULL;
key |= sp << 1;
key |= bp << 16;
if (key == sna->render_state.gen4.last_pipelined_pointers)
return;
OUT_BATCH(GEN4_3DSTATE_PIPELINED_POINTERS | 5);
OUT_BATCH(sna->render_state.gen4.vs);
OUT_BATCH(GEN4_GS_DISABLE); /* passthrough */
OUT_BATCH(GEN4_CLIP_DISABLE); /* passthrough */
OUT_BATCH(sna->render_state.gen4.sf[op->mask.bo != NULL]);
OUT_BATCH(sna->render_state.gen4.wm + sp);
OUT_BATCH(sna->render_state.gen4.cc + bp);
sna->render_state.gen4.last_pipelined_pointers = key;
gen4_emit_urb(sna);
}
static void
gen4_emit_drawing_rectangle(struct sna *sna, const struct sna_composite_op *op)
{
uint32_t limit = (op->dst.height - 1) << 16 | (op->dst.width - 1);
uint32_t offset = (uint16_t)op->dst.y << 16 | (uint16_t)op->dst.x;
if (sna->render_state.gen4.drawrect_limit == limit &&
sna->render_state.gen4.drawrect_offset == offset)
return;
sna->render_state.gen4.drawrect_offset = offset;
sna->render_state.gen4.drawrect_limit = limit;
OUT_BATCH(GEN4_3DSTATE_DRAWING_RECTANGLE | (4 - 2));
OUT_BATCH(0x00000000);
OUT_BATCH(limit);
OUT_BATCH(offset);
}
static void
gen4_emit_vertex_elements(struct sna *sna,
const struct sna_composite_op *op)
{
/*
* vertex data in vertex buffer
* position: (x, y)
* texture coordinate 0: (u0, v0) if (is_affine is true) else (u0, v0, w0)
* texture coordinate 1 if (has_mask is true): same as above
*/
struct gen4_render_state *render = &sna->render_state.gen4;
bool has_mask = op->mask.bo != NULL;
int nelem = has_mask ? 2 : 1;
int selem;
uint32_t w_component;
uint32_t src_format;
int id = op->u.gen4.ve_id;
if (render->ve_id == id)
return;
render->ve_id = id;
if (op->is_affine) {
src_format = GEN4_SURFACEFORMAT_R32G32_FLOAT;
w_component = GEN4_VFCOMPONENT_STORE_1_FLT;
selem = 2;
} else {
src_format = GEN4_SURFACEFORMAT_R32G32B32_FLOAT;
w_component = GEN4_VFCOMPONENT_STORE_SRC;
selem = 3;
}
/* The VUE layout
* dword 0-3: position (x, y, 1.0, 1.0),
* dword 4-7: texture coordinate 0 (u0, v0, w0, 1.0)
* [optional] dword 8-11: texture coordinate 1 (u1, v1, w1, 1.0)
*/
OUT_BATCH(GEN4_3DSTATE_VERTEX_ELEMENTS | (2 * (1 + nelem) - 1));
/* x,y */
OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID |
GEN4_SURFACEFORMAT_R16G16_SSCALED << VE0_FORMAT_SHIFT |
0 << VE0_OFFSET_SHIFT); /* offsets vb in bytes */
OUT_BATCH(GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT |
GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT |
GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT |
GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT |
(1*4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT); /* VUE offset in dwords */
/* u0, v0, w0 */
OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID |
src_format << VE0_FORMAT_SHIFT |
4 << VE0_OFFSET_SHIFT); /* offset vb in bytes */
OUT_BATCH(GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT |
GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT |
w_component << VE1_VFCOMPONENT_2_SHIFT |
GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT |
(2*4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT); /* VUE offset in dwords */
/* u1, v1, w1 */
if (has_mask) {
OUT_BATCH(id << VE0_VERTEX_BUFFER_INDEX_SHIFT | VE0_VALID |
src_format << VE0_FORMAT_SHIFT |
((1 + selem) * 4) << VE0_OFFSET_SHIFT); /* vb offset in bytes */
OUT_BATCH(GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT |
GEN4_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT |
w_component << VE1_VFCOMPONENT_2_SHIFT |
GEN4_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT |
(3*4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT); /* VUE offset in dwords */
}
}
static void
gen4_emit_state(struct sna *sna,
const struct sna_composite_op *op,
uint16_t wm_binding_table)
{
gen4_emit_binding_table(sna, wm_binding_table);
gen4_emit_pipelined_pointers(sna, op, op->op, op->u.gen4.wm_kernel);
gen4_emit_vertex_elements(sna, op);
gen4_emit_drawing_rectangle(sna, op);
if (kgem_bo_is_dirty(op->src.bo) || kgem_bo_is_dirty(op->mask.bo)) {
DBG(("%s: flushing dirty (%d, %d)\n", __FUNCTION__,
kgem_bo_is_dirty(op->src.bo),
kgem_bo_is_dirty(op->mask.bo)));
OUT_BATCH(MI_FLUSH);
kgem_clear_dirty(&sna->kgem);
kgem_bo_mark_dirty(&sna->kgem, op->dst.bo);
}
}
static void
gen4_bind_surfaces(struct sna *sna,
const struct sna_composite_op *op)
{
uint32_t *binding_table;
uint16_t offset;
gen4_get_batch(sna);
binding_table = gen4_composite_get_binding_table(sna, &offset);
binding_table[0] =
gen4_bind_bo(sna,
op->dst.bo, op->dst.width, op->dst.height,
gen4_get_dest_format(op->dst.format),
true);
binding_table[1] =
gen4_bind_bo(sna,
op->src.bo, op->src.width, op->src.height,
op->src.card_format,
false);
if (op->mask.bo)
binding_table[2] =
gen4_bind_bo(sna,
op->mask.bo,
op->mask.width,
op->mask.height,
op->mask.card_format,
false);
if (sna->kgem.surface == offset &&
*(uint64_t *)(sna->kgem.batch + sna->render_state.gen4.surface_table) == *(uint64_t*)binding_table &&
(op->mask.bo == NULL ||
sna->kgem.batch[sna->render_state.gen4.surface_table+2] == binding_table[2])) {
sna->kgem.surface += sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t);
offset = sna->render_state.gen4.surface_table;
}
gen4_emit_state(sna, op, offset);
}
fastcall static void
gen4_render_composite_blt(struct sna *sna,
const struct sna_composite_op *op,
const struct sna_composite_rectangles *r)
{
DBG(("%s: src=(%d, %d)+(%d, %d), mask=(%d, %d)+(%d, %d), dst=(%d, %d)+(%d, %d), size=(%d, %d)\n",
__FUNCTION__,
r->src.x, r->src.y, op->src.offset[0], op->src.offset[1],
r->mask.x, r->mask.y, op->mask.offset[0], op->mask.offset[1],
r->dst.x, r->dst.y, op->dst.x, op->dst.y,
r->width, r->height));
if (FLUSH_EVERY_VERTEX && op->need_magic_ca_pass) {
/* We have to reset the state after every FLUSH */
if (kgem_check_batch(&sna->kgem, 20)) {
gen4_emit_pipelined_pointers(sna, op, op->op,
op->u.gen4.wm_kernel);
} else
gen4_bind_surfaces(sna, op);
}
gen4_get_rectangles(sna, op, 1, gen4_bind_surfaces);
op->prim_emit(sna, op, r);
/* XXX are the shaders fubar? */
FLUSH(op);
}
fastcall static void
gen4_render_composite_box(struct sna *sna,
const struct sna_composite_op *op,
const BoxRec *box)
{
struct sna_composite_rectangles r;
r.dst.x = box->x1;
r.dst.y = box->y1;
r.width = box->x2 - box->x1;
r.height = box->y2 - box->y1;
r.mask = r.src = r.dst;
gen4_render_composite_blt(sna, op, &r);
}
static void
gen4_render_composite_boxes(struct sna *sna,
const struct sna_composite_op *op,
const BoxRec *box, int nbox)
{
DBG(("%s(%d) delta=(%d, %d), src=(%d, %d)/(%d, %d), mask=(%d, %d)/(%d, %d)\n",
__FUNCTION__, nbox, op->dst.x, op->dst.y,
op->src.offset[0], op->src.offset[1],
op->src.width, op->src.height,
op->mask.offset[0], op->mask.offset[1],
op->mask.width, op->mask.height));
do {
struct sna_composite_rectangles r;
r.dst.x = box->x1;
r.dst.y = box->y1;
r.width = box->x2 - box->x1;
r.height = box->y2 - box->y1;
r.mask = r.src = r.dst;
gen4_render_composite_blt(sna, op, &r);
box++;
} while (--nbox);
}
#ifndef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#endif
static uint32_t gen4_bind_video_source(struct sna *sna,
struct kgem_bo *src_bo,
uint32_t src_offset,
int src_width,
int src_height,
int src_pitch,
uint32_t src_surf_format)
{
struct gen4_surface_state *ss;
sna->kgem.surface -= sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t);
ss = memset(sna->kgem.batch + sna->kgem.surface, 0, sizeof(*ss));
ss->ss0.surface_type = GEN4_SURFACE_2D;
ss->ss0.surface_format = src_surf_format;
ss->ss0.color_blend = 1;
ss->ss1.base_addr =
kgem_add_reloc(&sna->kgem,
sna->kgem.surface + 1,
src_bo,
I915_GEM_DOMAIN_SAMPLER << 16,
src_offset);
ss->ss2.width = src_width - 1;
ss->ss2.height = src_height - 1;
ss->ss3.pitch = src_pitch - 1;
return sna->kgem.surface * sizeof(uint32_t);
}
static void gen4_video_bind_surfaces(struct sna *sna,
const struct sna_composite_op *op)
{
struct sna_video_frame *frame = op->priv;
uint32_t src_surf_format;
uint32_t src_surf_base[6];
int src_width[6];
int src_height[6];
int src_pitch[6];
uint32_t *binding_table;
uint16_t offset;
int n_src, n;
src_surf_base[0] = 0;
src_surf_base[1] = 0;
src_surf_base[2] = frame->VBufOffset;
src_surf_base[3] = frame->VBufOffset;
src_surf_base[4] = frame->UBufOffset;
src_surf_base[5] = frame->UBufOffset;
if (is_planar_fourcc(frame->id)) {
src_surf_format = GEN4_SURFACEFORMAT_R8_UNORM;
src_width[1] = src_width[0] = frame->width;
src_height[1] = src_height[0] = frame->height;
src_pitch[1] = src_pitch[0] = frame->pitch[1];
src_width[4] = src_width[5] = src_width[2] = src_width[3] =
frame->width / 2;
src_height[4] = src_height[5] = src_height[2] = src_height[3] =
frame->height / 2;
src_pitch[4] = src_pitch[5] = src_pitch[2] = src_pitch[3] =
frame->pitch[0];
n_src = 6;
} else {
if (frame->id == FOURCC_UYVY)
src_surf_format = GEN4_SURFACEFORMAT_YCRCB_SWAPY;
else
src_surf_format = GEN4_SURFACEFORMAT_YCRCB_NORMAL;
src_width[0] = frame->width;
src_height[0] = frame->height;
src_pitch[0] = frame->pitch[0];
n_src = 1;
}
gen4_get_batch(sna);
binding_table = gen4_composite_get_binding_table(sna, &offset);
binding_table[0] =
gen4_bind_bo(sna,
op->dst.bo, op->dst.width, op->dst.height,
gen4_get_dest_format(op->dst.format),
true);
for (n = 0; n < n_src; n++) {
binding_table[1+n] =
gen4_bind_video_source(sna,
frame->bo,
src_surf_base[n],
src_width[n],
src_height[n],
src_pitch[n],
src_surf_format);
}
gen4_emit_state(sna, op, offset);
}
static bool
gen4_render_video(struct sna *sna,
struct sna_video *video,
struct sna_video_frame *frame,
RegionPtr dstRegion,
short src_w, short src_h,
short drw_w, short drw_h,
PixmapPtr pixmap)
{
struct sna_composite_op tmp;
int nbox, dxo, dyo, pix_xoff, pix_yoff;
float src_scale_x, src_scale_y;
struct sna_pixmap *priv;
BoxPtr box;
DBG(("%s: %dx%d -> %dx%d\n", __FUNCTION__, src_w, src_h, drw_w, drw_h));
priv = sna_pixmap_force_to_gpu(pixmap, MOVE_READ | MOVE_WRITE);
if (priv == NULL)
return false;
memset(&tmp, 0, sizeof(tmp));
tmp.op = PictOpSrc;
tmp.dst.pixmap = pixmap;
tmp.dst.width = pixmap->drawable.width;
tmp.dst.height = pixmap->drawable.height;
tmp.dst.format = sna_format_for_depth(pixmap->drawable.depth);
tmp.dst.bo = priv->gpu_bo;
tmp.src.filter = SAMPLER_FILTER_BILINEAR;
tmp.src.repeat = SAMPLER_EXTEND_PAD;
tmp.u.gen4.wm_kernel =
is_planar_fourcc(frame->id) ? WM_KERNEL_VIDEO_PLANAR : WM_KERNEL_VIDEO_PACKED;
tmp.is_affine = true;
tmp.floats_per_vertex = 3;
tmp.u.gen4.ve_id = 1;
tmp.priv = frame;
if (!kgem_check_bo(&sna->kgem, tmp.dst.bo, frame->bo, NULL)) {
kgem_submit(&sna->kgem);
assert(kgem_check_bo(&sna->kgem, tmp.dst.bo, frame->bo, NULL));
}
gen4_video_bind_surfaces(sna, &tmp);
gen4_align_vertex(sna, &tmp);
/* Set up the offset for translating from the given region (in screen
* coordinates) to the backing pixmap.
*/
#ifdef COMPOSITE
pix_xoff = -pixmap->screen_x + pixmap->drawable.x;
pix_yoff = -pixmap->screen_y + pixmap->drawable.y;
#else
pix_xoff = 0;
pix_yoff = 0;
#endif
dxo = dstRegion->extents.x1;
dyo = dstRegion->extents.y1;
/* Use normalized texture coordinates */
src_scale_x = ((float)src_w / frame->width) / (float)drw_w;
src_scale_y = ((float)src_h / frame->height) / (float)drw_h;
box = REGION_RECTS(dstRegion);
nbox = REGION_NUM_RECTS(dstRegion);
while (nbox--) {
BoxRec r;
r.x1 = box->x1 + pix_xoff;
r.x2 = box->x2 + pix_xoff;
r.y1 = box->y1 + pix_yoff;
r.y2 = box->y2 + pix_yoff;
gen4_get_rectangles(sna, &tmp, 1, gen4_video_bind_surfaces);
OUT_VERTEX(r.x2, r.y2);
OUT_VERTEX_F((box->x2 - dxo) * src_scale_x);
OUT_VERTEX_F((box->y2 - dyo) * src_scale_y);
OUT_VERTEX(r.x1, r.y2);
OUT_VERTEX_F((box->x1 - dxo) * src_scale_x);
OUT_VERTEX_F((box->y2 - dyo) * src_scale_y);
OUT_VERTEX(r.x1, r.y1);
OUT_VERTEX_F((box->x1 - dxo) * src_scale_x);
OUT_VERTEX_F((box->y1 - dyo) * src_scale_y);
FLUSH(&tmp);
if (!DAMAGE_IS_ALL(priv->gpu_damage)) {
sna_damage_add_box(&priv->gpu_damage, &r);
sna_damage_subtract_box(&priv->cpu_damage, &r);
}
box++;
}
priv->clear = false;
if (sna->render_state.gen4.vertex_offset)
gen4_vertex_flush(sna);
return true;
}
static bool
gen4_composite_solid_init(struct sna *sna,
struct sna_composite_channel *channel,
uint32_t color)
{
channel->filter = PictFilterNearest;
channel->repeat = RepeatNormal;
channel->is_affine = true;
channel->is_solid = true;
channel->transform = NULL;
channel->width = 1;
channel->height = 1;
channel->card_format = GEN4_SURFACEFORMAT_B8G8R8A8_UNORM;
channel->bo = sna_render_get_solid(sna, color);
channel->scale[0] = channel->scale[1] = 1;
channel->offset[0] = channel->offset[1] = 0;
return channel->bo != NULL;
}
static bool
gen4_composite_linear_init(struct sna *sna,
PicturePtr picture,
struct sna_composite_channel *channel,
int x, int y,
int w, int h,
int dst_x, int dst_y)
{
PictLinearGradient *linear =
(PictLinearGradient *)picture->pSourcePict;
pixman_fixed_t tx, ty;
float x0, y0, sf;
float dx, dy;
DBG(("%s: p1=(%f, %f), p2=(%f, %f), src=(%d, %d), dst=(%d, %d), size=(%d, %d)\n",
__FUNCTION__,
pixman_fixed_to_double(linear->p1.x), pixman_fixed_to_double(linear->p1.y),
pixman_fixed_to_double(linear->p2.x), pixman_fixed_to_double(linear->p2.y),
x, y, dst_x, dst_y, w, h));
if (linear->p2.x == linear->p1.x && linear->p2.y == linear->p1.y)
return 0;
if (!sna_transform_is_affine(picture->transform)) {
DBG(("%s: fallback due to projective transform\n",
__FUNCTION__));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
channel->bo = sna_render_get_gradient(sna, (PictGradient *)linear);
if (!channel->bo)
return 0;
channel->filter = PictFilterNearest;
channel->repeat = picture->repeat ? picture->repeatType : RepeatNone;
channel->width = channel->bo->pitch / 4;
channel->height = 1;
channel->pict_format = PICT_a8r8g8b8;
channel->scale[0] = channel->scale[1] = 1;
channel->offset[0] = channel->offset[1] = 0;
if (sna_transform_is_translation(picture->transform, &tx, &ty)) {
dx = pixman_fixed_to_double(linear->p2.x - linear->p1.x);
dy = pixman_fixed_to_double(linear->p2.y - linear->p1.y);
x0 = pixman_fixed_to_double(linear->p1.x);
y0 = pixman_fixed_to_double(linear->p1.y);
if (tx | ty) {
x0 -= pixman_fixed_to_double(tx);
y0 -= pixman_fixed_to_double(ty);
}
} else {
struct pixman_f_vector p1, p2;
struct pixman_f_transform m, inv;
pixman_f_transform_from_pixman_transform(&m, picture->transform);
DBG(("%s: transform = [%f %f %f, %f %f %f, %f %f %f]\n",
__FUNCTION__,
m.m[0][0], m.m[0][1], m.m[0][2],
m.m[1][0], m.m[1][1], m.m[1][2],
m.m[2][0], m.m[2][1], m.m[2][2]));
if (!pixman_f_transform_invert(&inv, &m))
return 0;
p1.v[0] = pixman_fixed_to_double(linear->p1.x);
p1.v[1] = pixman_fixed_to_double(linear->p1.y);
p1.v[2] = 1.;
pixman_f_transform_point(&inv, &p1);
p2.v[0] = pixman_fixed_to_double(linear->p2.x);
p2.v[1] = pixman_fixed_to_double(linear->p2.y);
p2.v[2] = 1.;
pixman_f_transform_point(&inv, &p2);
DBG(("%s: untransformed: p1=(%f, %f, %f), p2=(%f, %f, %f)\n",
__FUNCTION__,
p1.v[0], p1.v[1], p1.v[2],
p2.v[0], p2.v[1], p2.v[2]));
dx = p2.v[0] - p1.v[0];
dy = p2.v[1] - p1.v[1];
x0 = p1.v[0];
y0 = p1.v[1];
}
sf = dx*dx + dy*dy;
dx /= sf;
dy /= sf;
channel->embedded_transform.matrix[0][0] = pixman_double_to_fixed(dx);
channel->embedded_transform.matrix[0][1] = pixman_double_to_fixed(dy);
channel->embedded_transform.matrix[0][2] = -pixman_double_to_fixed(dx*(x0+dst_x-x) + dy*(y0+dst_y-y));
channel->embedded_transform.matrix[1][0] = 0;
channel->embedded_transform.matrix[1][1] = 0;
channel->embedded_transform.matrix[1][2] = pixman_double_to_fixed(.5);
channel->embedded_transform.matrix[2][0] = 0;
channel->embedded_transform.matrix[2][1] = 0;
channel->embedded_transform.matrix[2][2] = pixman_fixed_1;
channel->transform = &channel->embedded_transform;
channel->is_affine = 1;
DBG(("%s: dx=%f, dy=%f, offset=%f\n",
__FUNCTION__, dx, dy, -dx*(x0-x+dst_x) + -dy*(y0-y+dst_y)));
return channel->bo != NULL;
}
static int
gen4_composite_picture(struct sna *sna,
PicturePtr picture,
struct sna_composite_channel *channel,
int x, int y,
int w, int h,
int dst_x, int dst_y,
bool precise)
{
PixmapPtr pixmap;
uint32_t color;
int16_t dx, dy;
DBG(("%s: (%d, %d)x(%d, %d), dst=(%d, %d)\n",
__FUNCTION__, x, y, w, h, dst_x, dst_y));
channel->is_solid = false;
channel->card_format = -1;
if (sna_picture_is_solid(picture, &color))
return gen4_composite_solid_init(sna, channel, color);
if (picture->pDrawable == NULL) {
int ret;
if (picture->pSourcePict->type == SourcePictTypeLinear)
return gen4_composite_linear_init(sna, picture, channel,
x, y,
w, h,
dst_x, dst_y);
DBG(("%s -- fixup, gradient\n", __FUNCTION__));
ret = -1;
if (!precise)
ret = sna_render_picture_approximate_gradient(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
if (ret == -1)
ret = sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
return ret;
}
if (picture->alphaMap) {
DBG(("%s -- fallback, alphamap\n", __FUNCTION__));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
if (!gen4_check_repeat(picture)) {
DBG(("%s: unknown repeat mode fixup\n", __FUNCTION__));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
if (!gen4_check_filter(picture)) {
DBG(("%s: unhandled filter fixup\n", __FUNCTION__));
return sna_render_picture_fixup(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
}
channel->repeat = picture->repeat ? picture->repeatType : RepeatNone;
channel->filter = picture->filter;
pixmap = get_drawable_pixmap(picture->pDrawable);
get_drawable_deltas(picture->pDrawable, pixmap, &dx, &dy);
x += dx + picture->pDrawable->x;
y += dy + picture->pDrawable->y;
channel->is_affine = sna_transform_is_affine(picture->transform);
if (sna_transform_is_integer_translation(picture->transform, &dx, &dy)) {
DBG(("%s: integer translation (%d, %d), removing\n",
__FUNCTION__, dx, dy));
x += dx;
y += dy;
channel->transform = NULL;
channel->filter = PictFilterNearest;
} else
channel->transform = picture->transform;
channel->card_format = gen4_get_card_format(picture->format);
if (channel->card_format == -1)
return sna_render_picture_convert(sna, picture, channel, pixmap,
x, y, w, h, dst_x, dst_y);
if (too_large(pixmap->drawable.width, pixmap->drawable.height))
return sna_render_picture_extract(sna, picture, channel,
x, y, w, h, dst_x, dst_y);
return sna_render_pixmap_bo(sna, channel, pixmap,
x, y, w, h, dst_x, dst_y);
}
static void gen4_composite_channel_convert(struct sna_composite_channel *channel)
{
channel->repeat = gen4_repeat(channel->repeat);
channel->filter = gen4_filter(channel->filter);
if (channel->card_format == (unsigned)-1)
channel->card_format = gen4_get_card_format(channel->pict_format);
}
static void
gen4_render_composite_done(struct sna *sna,
const struct sna_composite_op *op)
{
DBG(("%s()\n", __FUNCTION__));
if (sna->render_state.gen4.vertex_offset) {
gen4_vertex_flush(sna);
gen4_magic_ca_pass(sna, op);
}
if (op->mask.bo)
kgem_bo_destroy(&sna->kgem, op->mask.bo);
if (op->src.bo)
kgem_bo_destroy(&sna->kgem, op->src.bo);
sna_render_composite_redirect_done(sna, op);
}
static bool
gen4_composite_set_target(PicturePtr dst, struct sna_composite_op *op)
{
struct sna_pixmap *priv;
if (!gen4_check_dst_format(dst->format)) {
DBG(("%s: incompatible render target format %08x\n",
__FUNCTION__, dst->format));
return false;
}
op->dst.pixmap = get_drawable_pixmap(dst->pDrawable);
op->dst.width = op->dst.pixmap->drawable.width;
op->dst.height = op->dst.pixmap->drawable.height;
op->dst.format = dst->format;
priv = sna_pixmap_force_to_gpu(op->dst.pixmap, MOVE_READ | MOVE_WRITE);
if (priv == NULL)
return false;
op->dst.bo = priv->gpu_bo;
op->damage = &priv->gpu_damage;
if (sna_damage_is_all(&priv->gpu_damage, op->dst.width, op->dst.height))
op->damage = NULL;
DBG(("%s: all-damaged=%d, damage=%p\n", __FUNCTION__,
sna_damage_is_all(&priv->gpu_damage, op->dst.width, op->dst.height),
op->damage));
get_drawable_deltas(dst->pDrawable, op->dst.pixmap,
&op->dst.x, &op->dst.y);
return true;
}
static inline bool
picture_is_cpu(PicturePtr picture)
{
if (!picture->pDrawable)
return false;
/* If it is a solid, try to use the render paths */
if (picture->pDrawable->width == 1 &&
picture->pDrawable->height == 1 &&
picture->repeat)
return false;
return is_cpu(picture->pDrawable);
}
static inline bool prefer_blt(struct sna *sna)
{
#if PREFER_BLT
return true;
(void)sna;
#else
return sna->kgem.mode != KGEM_RENDER;
#endif
}
static bool
try_blt(struct sna *sna,
PicturePtr source,
int width, int height)
{
if (prefer_blt(sna)) {
DBG(("%s: already performing BLT\n", __FUNCTION__));
return true;
}
if (too_large(width, height)) {
DBG(("%s: operation too large for 3D pipe (%d, %d)\n",
__FUNCTION__, width, height));
return true;
}
/* is the source picture only in cpu memory e.g. a shm pixmap? */
return picture_is_cpu(source);
}
static bool
check_gradient(PicturePtr picture)
{
switch (picture->pSourcePict->type) {
case SourcePictTypeSolidFill:
case SourcePictTypeLinear:
return false;
default:
return true;
}
}
static bool
has_alphamap(PicturePtr p)
{
return p->alphaMap != NULL;
}
static bool
untransformed(PicturePtr p)
{
return !p->transform || pixman_transform_is_int_translate(p->transform);
}
static bool
need_upload(PicturePtr p)
{
return p->pDrawable && unattached(p->pDrawable) && untransformed(p);
}
static bool
source_is_busy(PixmapPtr pixmap)
{
struct sna_pixmap *priv = sna_pixmap(pixmap);
if (priv == NULL)
return false;
if (priv->clear)
return false;
if (priv->gpu_bo && kgem_bo_is_busy(priv->gpu_bo))
return true;
return priv->gpu_damage && !priv->cpu_damage;
}
static bool
source_fallback(PicturePtr p, PixmapPtr pixmap)
{
if (sna_picture_is_solid(p, NULL))
return false;
if (p->pSourcePict)
return check_gradient(p);
if (!gen4_check_repeat(p) || !gen4_check_format(p->format))
return true;
/* soft errors: perfer to upload/compute rather than readback */
if (pixmap && source_is_busy(pixmap))
return false;
return has_alphamap(p) || !gen4_check_filter(p) || need_upload(p);
}
static bool
gen4_composite_fallback(struct sna *sna,
PicturePtr src,
PicturePtr mask,
PicturePtr dst)
{
struct sna_pixmap *priv;
PixmapPtr src_pixmap;
PixmapPtr mask_pixmap;
PixmapPtr dst_pixmap;
bool src_fallback, mask_fallback;
if (!gen4_check_dst_format(dst->format)) {
DBG(("%s: unknown destination format: %d\n",
__FUNCTION__, dst->format));
return true;
}
dst_pixmap = get_drawable_pixmap(dst->pDrawable);
src_pixmap = src->pDrawable ? get_drawable_pixmap(src->pDrawable) : NULL;
src_fallback = source_fallback(src, src_pixmap);
if (mask) {
mask_pixmap = mask->pDrawable ? get_drawable_pixmap(mask->pDrawable) : NULL;
mask_fallback = source_fallback(mask, mask_pixmap);
} else {
mask_pixmap = NULL;
mask_fallback = false;
}
/* If we are using the destination as a source and need to
* readback in order to upload the source, do it all
* on the cpu.
*/
if (src_pixmap == dst_pixmap && src_fallback) {
DBG(("%s: src is dst and will fallback\n",__FUNCTION__));
return true;
}
if (mask_pixmap == dst_pixmap && mask_fallback) {
DBG(("%s: mask is dst and will fallback\n",__FUNCTION__));
return true;
}
/* If anything is on the GPU, push everything out to the GPU */
priv = sna_pixmap(dst_pixmap);
if (priv && priv->gpu_damage && !priv->clear) {
DBG(("%s: dst is already on the GPU, try to use GPU\n",
__FUNCTION__));
return false;
}
if (!src_fallback) {
DBG(("%s: src is already on the GPU, try to use GPU\n",
__FUNCTION__));
return false;
}
if (mask && !mask_fallback) {
DBG(("%s: mask is already on the GPU, try to use GPU\n",
__FUNCTION__));
return false;
}
/* However if the dst is not on the GPU and we need to
* render one of the sources using the CPU, we may
* as well do the entire operation in place onthe CPU.
*/
if (src_fallback) {
DBG(("%s: dst is on the CPU and src will fallback\n",
__FUNCTION__));
return true;
}
if (mask && mask_fallback) {
DBG(("%s: dst is on the CPU and mask will fallback\n",
__FUNCTION__));
return true;
}
if (too_large(dst_pixmap->drawable.width,
dst_pixmap->drawable.height) &&
(priv == NULL || DAMAGE_IS_ALL(priv->cpu_damage))) {
DBG(("%s: dst is on the CPU and too large\n", __FUNCTION__));
return true;
}
DBG(("%s: dst is not on the GPU and the operation should not fallback\n",
__FUNCTION__));
return false;
}
static int
reuse_source(struct sna *sna,
PicturePtr src, struct sna_composite_channel *sc, int src_x, int src_y,
PicturePtr mask, struct sna_composite_channel *mc, int msk_x, int msk_y)
{
uint32_t color;
if (src_x != msk_x || src_y != msk_y)
return false;
if (src == mask) {
DBG(("%s: mask is source\n", __FUNCTION__));
*mc = *sc;
mc->bo = kgem_bo_reference(mc->bo);
return true;
}
if (sna_picture_is_solid(mask, &color))
return gen4_composite_solid_init(sna, mc, color);
if (sc->is_solid)
return false;
if (src->pDrawable == NULL || mask->pDrawable != src->pDrawable)
return false;
DBG(("%s: mask reuses source drawable\n", __FUNCTION__));
if (!sna_transform_equal(src->transform, mask->transform))
return false;
if (!sna_picture_alphamap_equal(src, mask))
return false;
if (!gen4_check_repeat(mask))
return false;
if (!gen4_check_filter(mask))
return false;
if (!gen4_check_format(mask->format))
return false;
DBG(("%s: reusing source channel for mask with a twist\n",
__FUNCTION__));
*mc = *sc;
mc->repeat = gen4_repeat(mask->repeat ? mask->repeatType : RepeatNone);
mc->filter = gen4_filter(mask->filter);
mc->pict_format = mask->format;
mc->card_format = gen4_get_card_format(mask->format);
mc->bo = kgem_bo_reference(mc->bo);
return true;
}
static bool
gen4_render_composite(struct sna *sna,
uint8_t op,
PicturePtr src,
PicturePtr mask,
PicturePtr dst,
int16_t src_x, int16_t src_y,
int16_t msk_x, int16_t msk_y,
int16_t dst_x, int16_t dst_y,
int16_t width, int16_t height,
struct sna_composite_op *tmp)
{
DBG(("%s: %dx%d, current mode=%d\n", __FUNCTION__,
width, height, sna->kgem.mode));
if (op >= ARRAY_SIZE(gen4_blend_op))
return false;
#if NO_COMPOSITE
if (mask)
return false;
return sna_blt_composite(sna, op,
src, dst,
src_x, src_y,
dst_x, dst_y,
width, height, tmp);
#endif
if (mask == NULL &&
try_blt(sna, src, width, height) &&
sna_blt_composite(sna, op,
src, dst,
src_x, src_y,
dst_x, dst_y,
width, height, tmp))
return true;
if (gen4_composite_fallback(sna, src, mask, dst))
return false;
if (need_tiling(sna, width, height))
return sna_tiling_composite(op, src, mask, dst,
src_x, src_y,
msk_x, msk_y,
dst_x, dst_y,
width, height,
tmp);
if (!gen4_composite_set_target(dst, tmp))
return false;
sna_render_reduce_damage(tmp, dst_x, dst_y, width, height);
if (too_large(tmp->dst.width, tmp->dst.height) &&
!sna_render_composite_redirect(sna, tmp,
dst_x, dst_y, width, height))
return false;
switch (gen4_composite_picture(sna, src, &tmp->src,
src_x, src_y,
width, height,
dst_x, dst_y,
dst->polyMode == PolyModePrecise)) {
case -1:
DBG(("%s: failed to prepare source\n", __FUNCTION__));
goto cleanup_dst;
case 0:
gen4_composite_solid_init(sna, &tmp->src, 0);
/* fall through to fixup */
case 1:
gen4_composite_channel_convert(&tmp->src);
break;
}
tmp->op = op;
tmp->is_affine = tmp->src.is_affine;
tmp->has_component_alpha = false;
tmp->need_magic_ca_pass = false;
tmp->prim_emit = gen4_emit_composite_primitive;
if (mask) {
if (mask->componentAlpha && PICT_FORMAT_RGB(mask->format)) {
tmp->has_component_alpha = true;
/* Check if it's component alpha that relies on a source alpha and on
* the source value. We can only get one of those into the single
* source value that we get to blend with.
*/
if (gen4_blend_op[op].src_alpha &&
(gen4_blend_op[op].src_blend != GEN4_BLENDFACTOR_ZERO)) {
if (op != PictOpOver) {
DBG(("%s -- fallback: unhandled component alpha blend\n",
__FUNCTION__));
goto cleanup_src;
}
tmp->need_magic_ca_pass = true;
tmp->op = PictOpOutReverse;
}
}
if (!reuse_source(sna,
src, &tmp->src, src_x, src_y,
mask, &tmp->mask, msk_x, msk_y)) {
switch (gen4_composite_picture(sna, mask, &tmp->mask,
msk_x, msk_y,
width, height,
dst_x, dst_y,
dst->polyMode == PolyModePrecise)) {
case -1:
DBG(("%s: failed to prepare mask\n", __FUNCTION__));
goto cleanup_src;
case 0:
gen4_composite_solid_init(sna, &tmp->mask, 0);
/* fall through to fixup */
case 1:
gen4_composite_channel_convert(&tmp->mask);
break;
}
}
tmp->is_affine &= tmp->mask.is_affine;
if (tmp->src.transform == NULL && tmp->mask.transform == NULL)
tmp->prim_emit = gen4_emit_composite_primitive_identity_source_mask;
tmp->floats_per_vertex = 5 + 2 * !tmp->is_affine;
} else {
if (tmp->src.is_solid)
tmp->prim_emit = gen4_emit_composite_primitive_solid;
else if (tmp->src.transform == NULL)
tmp->prim_emit = gen4_emit_composite_primitive_identity_source;
else if (tmp->src.is_affine)
tmp->prim_emit = gen4_emit_composite_primitive_affine_source;
tmp->mask.filter = SAMPLER_FILTER_NEAREST;
tmp->mask.repeat = SAMPLER_EXTEND_NONE;
tmp->floats_per_vertex = 3 + !tmp->is_affine;
}
tmp->u.gen4.wm_kernel =
gen4_choose_composite_kernel(tmp->op,
tmp->mask.bo != NULL,
tmp->has_component_alpha,
tmp->is_affine);
tmp->u.gen4.ve_id = (tmp->mask.bo != NULL) << 1 | tmp->is_affine;
tmp->blt = gen4_render_composite_blt;
tmp->box = gen4_render_composite_box;
tmp->boxes = gen4_render_composite_boxes;
tmp->done = gen4_render_composite_done;
if (!kgem_check_bo(&sna->kgem,
tmp->dst.bo, tmp->src.bo, tmp->mask.bo,
NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem,
tmp->dst.bo, tmp->src.bo, tmp->mask.bo,
NULL))
goto cleanup_mask;
}
gen4_bind_surfaces(sna, tmp);
gen4_align_vertex(sna, tmp);
return true;
cleanup_mask:
if (tmp->mask.bo)
kgem_bo_destroy(&sna->kgem, tmp->mask.bo);
cleanup_src:
if (tmp->src.bo)
kgem_bo_destroy(&sna->kgem, tmp->src.bo);
cleanup_dst:
if (tmp->redirect.real_bo)
kgem_bo_destroy(&sna->kgem, tmp->dst.bo);
return false;
}
/* A poor man's span interface. But better than nothing? */
#if !NO_COMPOSITE_SPANS
static bool
gen4_composite_alpha_gradient_init(struct sna *sna,
struct sna_composite_channel *channel)
{
DBG(("%s\n", __FUNCTION__));
channel->filter = PictFilterNearest;
channel->repeat = RepeatPad;
channel->is_affine = true;
channel->is_solid = false;
channel->transform = NULL;
channel->width = 256;
channel->height = 1;
channel->card_format = GEN4_SURFACEFORMAT_B8G8R8A8_UNORM;
channel->bo = sna_render_get_alpha_gradient(sna);
channel->scale[0] = channel->scale[1] = 1;
channel->offset[0] = channel->offset[1] = 0;
return channel->bo != NULL;
}
inline static void
gen4_emit_composite_texcoord(struct sna *sna,
const struct sna_composite_channel *channel,
int16_t x, int16_t y)
{
float t[3];
if (channel->is_affine) {
sna_get_transformed_coordinates(x + channel->offset[0],
y + channel->offset[1],
channel->transform,
&t[0], &t[1]);
OUT_VERTEX_F(t[0] * channel->scale[0]);
OUT_VERTEX_F(t[1] * channel->scale[1]);
} else {
t[0] = t[1] = 0; t[2] = 1;
sna_get_transformed_coordinates_3d(x + channel->offset[0],
y + channel->offset[1],
channel->transform,
&t[0], &t[1], &t[2]);
OUT_VERTEX_F(t[0] * channel->scale[0]);
OUT_VERTEX_F(t[1] * channel->scale[1]);
OUT_VERTEX_F(t[2]);
}
}
inline static void
gen4_emit_composite_texcoord_affine(struct sna *sna,
const struct sna_composite_channel *channel,
int16_t x, int16_t y)
{
float t[2];
sna_get_transformed_coordinates(x + channel->offset[0],
y + channel->offset[1],
channel->transform,
&t[0], &t[1]);
OUT_VERTEX_F(t[0] * channel->scale[0]);
OUT_VERTEX_F(t[1] * channel->scale[1]);
}
inline static void
gen4_emit_composite_spans_vertex(struct sna *sna,
const struct sna_composite_spans_op *op,
int16_t x, int16_t y)
{
OUT_VERTEX(x, y);
gen4_emit_composite_texcoord(sna, &op->base.src, x, y);
}
fastcall static void
gen4_emit_composite_spans_primitive(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
gen4_emit_composite_spans_vertex(sna, op, box->x2, box->y2);
OUT_VERTEX_F(opacity);
OUT_VERTEX_F(1);
if (!op->base.is_affine)
OUT_VERTEX_F(1);
gen4_emit_composite_spans_vertex(sna, op, box->x1, box->y2);
OUT_VERTEX_F(opacity);
OUT_VERTEX_F(1);
if (!op->base.is_affine)
OUT_VERTEX_F(1);
gen4_emit_composite_spans_vertex(sna, op, box->x1, box->y1);
OUT_VERTEX_F(opacity);
OUT_VERTEX_F(0);
if (!op->base.is_affine)
OUT_VERTEX_F(1);
}
fastcall static void
gen4_emit_composite_spans_solid(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
OUT_VERTEX(box->x2, box->y2);
OUT_VERTEX_F(1); OUT_VERTEX_F(1);
OUT_VERTEX_F(opacity); OUT_VERTEX_F(1);
OUT_VERTEX(box->x1, box->y2);
OUT_VERTEX_F(0); OUT_VERTEX_F(1);
OUT_VERTEX_F(opacity); OUT_VERTEX_F(1);
OUT_VERTEX(box->x1, box->y1);
OUT_VERTEX_F(0); OUT_VERTEX_F(0);
OUT_VERTEX_F(opacity); OUT_VERTEX_F(0);
}
fastcall static void
gen4_emit_composite_spans_affine(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box,
float opacity)
{
OUT_VERTEX(box->x2, box->y2);
gen4_emit_composite_texcoord_affine(sna, &op->base.src,
box->x2, box->y2);
OUT_VERTEX_F(opacity);
OUT_VERTEX_F(1);
OUT_VERTEX(box->x1, box->y2);
gen4_emit_composite_texcoord_affine(sna, &op->base.src,
box->x1, box->y2);
OUT_VERTEX_F(opacity);
OUT_VERTEX_F(1);
OUT_VERTEX(box->x1, box->y1);
gen4_emit_composite_texcoord_affine(sna, &op->base.src,
box->x1, box->y1);
OUT_VERTEX_F(opacity);
OUT_VERTEX_F(0);
}
fastcall static void
gen4_render_composite_spans_box(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box, float opacity)
{
DBG(("%s: src=+(%d, %d), opacity=%f, dst=+(%d, %d), box=(%d, %d) x (%d, %d)\n",
__FUNCTION__,
op->base.src.offset[0], op->base.src.offset[1],
opacity,
op->base.dst.x, op->base.dst.y,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1));
gen4_get_rectangles(sna, &op->base, 1, gen4_bind_surfaces);
op->prim_emit(sna, op, box, opacity);
FLUSH_NOCA();
}
static void
gen4_render_composite_spans_boxes(struct sna *sna,
const struct sna_composite_spans_op *op,
const BoxRec *box, int nbox,
float opacity)
{
DBG(("%s: nbox=%d, src=+(%d, %d), opacity=%f, dst=+(%d, %d)\n",
__FUNCTION__, nbox,
op->base.src.offset[0], op->base.src.offset[1],
opacity,
op->base.dst.x, op->base.dst.y));
do {
gen4_render_composite_spans_box(sna, op, box++, opacity);
} while (--nbox);
}
fastcall static void
gen4_render_composite_spans_done(struct sna *sna,
const struct sna_composite_spans_op *op)
{
if (sna->render_state.gen4.vertex_offset)
gen4_vertex_flush(sna);
DBG(("%s()\n", __FUNCTION__));
if (op->base.src.bo)
kgem_bo_destroy(&sna->kgem, op->base.src.bo);
sna_render_composite_redirect_done(sna, &op->base);
}
static bool
gen4_check_composite_spans(struct sna *sna,
uint8_t op, PicturePtr src, PicturePtr dst,
int16_t width, int16_t height,
unsigned flags)
{
if ((flags & COMPOSITE_SPANS_RECTILINEAR) == 0)
return false;
if (op >= ARRAY_SIZE(gen4_blend_op))
return false;
if (gen4_composite_fallback(sna, src, NULL, dst))
return false;
if (!is_gpu(dst->pDrawable))
return false;
return true;
}
static bool
gen4_render_composite_spans(struct sna *sna,
uint8_t op,
PicturePtr src,
PicturePtr dst,
int16_t src_x, int16_t src_y,
int16_t dst_x, int16_t dst_y,
int16_t width, int16_t height,
unsigned flags,
struct sna_composite_spans_op *tmp)
{
DBG(("%s: %dx%d with flags=%x, current mode=%d\n", __FUNCTION__,
width, height, flags, sna->kgem.ring));
assert(gen4_check_composite_spans(sna, op, src, dst, width, height, flags));
if (need_tiling(sna, width, height)) {
DBG(("%s: tiling, operation (%dx%d) too wide for pipeline\n",
__FUNCTION__, width, height));
return sna_tiling_composite_spans(op, src, dst,
src_x, src_y, dst_x, dst_y,
width, height, flags, tmp);
}
tmp->base.op = op;
if (!gen4_composite_set_target(dst, &tmp->base))
return false;
sna_render_reduce_damage(&tmp->base, dst_x, dst_y, width, height);
if (too_large(tmp->base.dst.width, tmp->base.dst.height)) {
if (!sna_render_composite_redirect(sna, &tmp->base,
dst_x, dst_y, width, height))
return false;
}
switch (gen4_composite_picture(sna, src, &tmp->base.src,
src_x, src_y,
width, height,
dst_x, dst_y,
dst->polyMode == PolyModePrecise)) {
case -1:
goto cleanup_dst;
case 0:
gen4_composite_solid_init(sna, &tmp->base.src, 0);
/* fall through to fixup */
case 1:
gen4_composite_channel_convert(&tmp->base.src);
break;
}
tmp->base.mask.bo = NULL;
tmp->base.is_affine = tmp->base.src.is_affine;
tmp->base.has_component_alpha = false;
tmp->base.need_magic_ca_pass = false;
gen4_composite_alpha_gradient_init(sna, &tmp->base.mask);
tmp->prim_emit = gen4_emit_composite_spans_primitive;
if (tmp->base.src.is_solid)
tmp->prim_emit = gen4_emit_composite_spans_solid;
else if (tmp->base.is_affine)
tmp->prim_emit = gen4_emit_composite_spans_affine;
tmp->base.floats_per_vertex = 5 + 2*!tmp->base.is_affine;
tmp->base.floats_per_rect = 3 * tmp->base.floats_per_vertex;
tmp->base.u.gen4.wm_kernel =
gen4_choose_composite_kernel(tmp->base.op,
true, false,
tmp->base.is_affine);
tmp->base.u.gen4.ve_id = 1 << 1 | tmp->base.is_affine;
tmp->box = gen4_render_composite_spans_box;
tmp->boxes = gen4_render_composite_spans_boxes;
tmp->done = gen4_render_composite_spans_done;
if (!kgem_check_bo(&sna->kgem,
tmp->base.dst.bo, tmp->base.src.bo,
NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem,
tmp->base.dst.bo, tmp->base.src.bo,
NULL))
goto cleanup_src;
}
gen4_bind_surfaces(sna, &tmp->base);
gen4_align_vertex(sna, &tmp->base);
return true;
cleanup_src:
if (tmp->base.src.bo)
kgem_bo_destroy(&sna->kgem, tmp->base.src.bo);
cleanup_dst:
if (tmp->base.redirect.real_bo)
kgem_bo_destroy(&sna->kgem, tmp->base.dst.bo);
return false;
}
#endif
static void
gen4_copy_bind_surfaces(struct sna *sna, const struct sna_composite_op *op)
{
uint32_t *binding_table;
uint16_t offset;
gen4_get_batch(sna);
binding_table = gen4_composite_get_binding_table(sna, &offset);
binding_table[0] =
gen4_bind_bo(sna,
op->dst.bo, op->dst.width, op->dst.height,
gen4_get_dest_format(op->dst.format),
true);
binding_table[1] =
gen4_bind_bo(sna,
op->src.bo, op->src.width, op->src.height,
op->src.card_format,
false);
if (sna->kgem.surface == offset &&
*(uint64_t *)(sna->kgem.batch + sna->render_state.gen4.surface_table) == *(uint64_t*)binding_table) {
sna->kgem.surface += sizeof(struct gen4_surface_state_padded) / sizeof(uint32_t);
offset = sna->render_state.gen4.surface_table;
}
gen4_emit_state(sna, op, offset);
}
static void
gen4_render_copy_one(struct sna *sna,
const struct sna_composite_op *op,
int sx, int sy,
int w, int h,
int dx, int dy)
{
gen4_get_rectangles(sna, op, 1, gen4_copy_bind_surfaces);
OUT_VERTEX(dx+w, dy+h);
OUT_VERTEX_F((sx+w)*op->src.scale[0]);
OUT_VERTEX_F((sy+h)*op->src.scale[1]);
OUT_VERTEX(dx, dy+h);
OUT_VERTEX_F(sx*op->src.scale[0]);
OUT_VERTEX_F((sy+h)*op->src.scale[1]);
OUT_VERTEX(dx, dy);
OUT_VERTEX_F(sx*op->src.scale[0]);
OUT_VERTEX_F(sy*op->src.scale[1]);
FLUSH(op);
}
static inline bool prefer_blt_copy(struct sna *sna, unsigned flags)
{
#if PREFER_BLT
return true;
(void)sna;
#else
return sna->kgem.mode != KGEM_RENDER;
#endif
(void)flags;
}
static bool
gen4_render_copy_boxes(struct sna *sna, uint8_t alu,
PixmapPtr src, struct kgem_bo *src_bo, int16_t src_dx, int16_t src_dy,
PixmapPtr dst, struct kgem_bo *dst_bo, int16_t dst_dx, int16_t dst_dy,
const BoxRec *box, int n, unsigned flags)
{
struct sna_composite_op tmp;
DBG(("%s x %d\n", __FUNCTION__, n));
#if NO_COPY_BOXES
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return false;
return sna_blt_copy_boxes(sna, alu,
src_bo, src_dx, src_dy,
dst_bo, dst_dx, dst_dy,
dst->drawable.bitsPerPixel,
box, n);
#endif
if (prefer_blt_copy(sna, flags) &&
sna_blt_compare_depth(&src->drawable, &dst->drawable) &&
sna_blt_copy_boxes(sna, alu,
src_bo, src_dx, src_dy,
dst_bo, dst_dx, dst_dy,
dst->drawable.bitsPerPixel,
box, n))
return true;
if (!(alu == GXcopy || alu == GXclear) || src_bo == dst_bo) {
fallback_blt:
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return false;
return sna_blt_copy_boxes_fallback(sna, alu,
src, src_bo, src_dx, src_dy,
dst, dst_bo, dst_dx, dst_dy,
box, n);
}
memset(&tmp, 0, sizeof(tmp));
DBG(("%s (%d, %d)->(%d, %d) x %d\n",
__FUNCTION__, src_dx, src_dy, dst_dx, dst_dy, n));
if (dst->drawable.depth == src->drawable.depth) {
tmp.dst.format = sna_render_format_for_depth(dst->drawable.depth);
tmp.src.pict_format = tmp.dst.format;
} else {
tmp.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp.src.pict_format = sna_format_for_depth(src->drawable.depth);
}
if (!gen4_check_format(tmp.src.pict_format))
goto fallback_blt;
tmp.op = alu == GXcopy ? PictOpSrc : PictOpClear;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.x = tmp.dst.y = 0;
tmp.dst.bo = dst_bo;
tmp.damage = NULL;
sna_render_composite_redirect_init(&tmp);
if (too_large(tmp.dst.width, tmp.dst.height)) {
BoxRec extents = box[0];
int i;
for (i = 1; i < n; i++) {
if (box[i].x1 < extents.x1)
extents.x1 = box[i].x1;
if (box[i].y1 < extents.y1)
extents.y1 = box[i].y1;
if (box[i].x2 > extents.x2)
extents.x2 = box[i].x2;
if (box[i].y2 > extents.y2)
extents.y2 = box[i].y2;
}
if (!sna_render_composite_redirect(sna, &tmp,
extents.x1 + dst_dx,
extents.y1 + dst_dy,
extents.x2 - extents.x1,
extents.y2 - extents.y1))
goto fallback_tiled;
}
tmp.src.filter = SAMPLER_FILTER_NEAREST;
tmp.src.repeat = SAMPLER_EXTEND_NONE;
tmp.src.card_format = gen4_get_card_format(tmp.src.pict_format);
if (too_large(src->drawable.width, src->drawable.height)) {
BoxRec extents = box[0];
int i;
for (i = 1; i < n; i++) {
if (extents.x1 < box[i].x1)
extents.x1 = box[i].x1;
if (extents.y1 < box[i].y1)
extents.y1 = box[i].y1;
if (extents.x2 > box[i].x2)
extents.x2 = box[i].x2;
if (extents.y2 > box[i].y2)
extents.y2 = box[i].y2;
}
if (!sna_render_pixmap_partial(sna, src, src_bo, &tmp.src,
extents.x1 + src_dx,
extents.y1 + src_dy,
extents.x2 - extents.x1,
extents.y2 - extents.y1)) {
goto fallback_tiled_dst;
}
} else {
tmp.src.bo = kgem_bo_reference(src_bo);
tmp.src.width = src->drawable.width;
tmp.src.height = src->drawable.height;
tmp.src.offset[0] = tmp.src.offset[1] = 0;
tmp.src.scale[0] = 1.f/src->drawable.width;
tmp.src.scale[1] = 1.f/src->drawable.height;
}
tmp.mask.bo = NULL;
tmp.is_affine = true;
tmp.floats_per_vertex = 3;
tmp.u.gen4.wm_kernel = WM_KERNEL;
tmp.u.gen4.ve_id = 1;
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL))
goto fallback_tiled_src;
}
dst_dx += tmp.dst.x;
dst_dy += tmp.dst.y;
tmp.dst.x = tmp.dst.y = 0;
src_dx += tmp.src.offset[0];
src_dy += tmp.src.offset[1];
gen4_copy_bind_surfaces(sna, &tmp);
gen4_align_vertex(sna, &tmp);
do {
gen4_render_copy_one(sna, &tmp,
box->x1 + src_dx, box->y1 + src_dy,
box->x2 - box->x1, box->y2 - box->y1,
box->x1 + dst_dx, box->y1 + dst_dy);
box++;
} while (--n);
sna_render_composite_redirect_done(sna, &tmp);
kgem_bo_destroy(&sna->kgem, tmp.src.bo);
return true;
fallback_tiled_src:
kgem_bo_destroy(&sna->kgem, tmp.src.bo);
fallback_tiled_dst:
if (tmp.redirect.real_bo)
kgem_bo_destroy(&sna->kgem, tmp.dst.bo);
fallback_tiled:
return sna_tiling_copy_boxes(sna, alu,
src, src_bo, src_dx, src_dy,
dst, dst_bo, dst_dx, dst_dy,
box, n);
}
static void
gen4_render_copy_blt(struct sna *sna,
const struct sna_copy_op *op,
int16_t sx, int16_t sy,
int16_t w, int16_t h,
int16_t dx, int16_t dy)
{
gen4_render_copy_one(sna, &op->base, sx, sy, w, h, dx, dy);
}
static void
gen4_render_copy_done(struct sna *sna, const struct sna_copy_op *op)
{
if (sna->render_state.gen4.vertex_offset)
gen4_vertex_flush(sna);
}
static bool
gen4_render_copy(struct sna *sna, uint8_t alu,
PixmapPtr src, struct kgem_bo *src_bo,
PixmapPtr dst, struct kgem_bo *dst_bo,
struct sna_copy_op *op)
{
DBG(("%s: src=%ld, dst=%ld, alu=%d\n",
__FUNCTION__,
src->drawable.serialNumber,
dst->drawable.serialNumber,
alu));
#if NO_COPY
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return false;
return sna_blt_copy(sna, alu,
src_bo, dst_bo,
dst->drawable.bitsPerPixel,
op);
#endif
if (prefer_blt(sna) &&
sna_blt_compare_depth(&src->drawable, &dst->drawable) &&
sna_blt_copy(sna, alu,
src_bo, dst_bo,
dst->drawable.bitsPerPixel,
op))
return true;
if (!(alu == GXcopy || alu == GXclear) || src_bo == dst_bo ||
too_large(src->drawable.width, src->drawable.height) ||
too_large(dst->drawable.width, dst->drawable.height)) {
fallback:
if (!sna_blt_compare_depth(&src->drawable, &dst->drawable))
return false;
return sna_blt_copy(sna, alu, src_bo, dst_bo,
dst->drawable.bitsPerPixel,
op);
}
if (dst->drawable.depth == src->drawable.depth) {
op->base.dst.format = sna_render_format_for_depth(dst->drawable.depth);
op->base.src.pict_format = op->base.dst.format;
} else {
op->base.dst.format = sna_format_for_depth(dst->drawable.depth);
op->base.src.pict_format = sna_format_for_depth(src->drawable.depth);
}
if (!gen4_check_format(op->base.src.pict_format))
goto fallback;
op->base.op = alu == GXcopy ? PictOpSrc : PictOpClear;
op->base.dst.pixmap = dst;
op->base.dst.width = dst->drawable.width;
op->base.dst.height = dst->drawable.height;
op->base.dst.bo = dst_bo;
op->base.src.bo = src_bo;
op->base.src.card_format =
gen4_get_card_format(op->base.src.pict_format);
op->base.src.width = src->drawable.width;
op->base.src.height = src->drawable.height;
op->base.src.scale[0] = 1.f/src->drawable.width;
op->base.src.scale[1] = 1.f/src->drawable.height;
op->base.src.filter = SAMPLER_FILTER_NEAREST;
op->base.src.repeat = SAMPLER_EXTEND_NONE;
op->base.mask.bo = NULL;
op->base.is_affine = true;
op->base.floats_per_vertex = 3;
op->base.u.gen4.wm_kernel = WM_KERNEL;
op->base.u.gen4.ve_id = 1;
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL)) {
kgem_submit(&sna->kgem);
if (!kgem_check_bo(&sna->kgem, dst_bo, src_bo, NULL))
goto fallback;
}
gen4_copy_bind_surfaces(sna, &op->base);
gen4_align_vertex(sna, &op->base);
op->blt = gen4_render_copy_blt;
op->done = gen4_render_copy_done;
return true;
}
static void
gen4_fill_bind_surfaces(struct sna *sna, const struct sna_composite_op *op)
{
uint32_t *binding_table;
uint16_t offset;
gen4_get_batch(sna);
binding_table = gen4_composite_get_binding_table(sna, &offset);
binding_table[0] =
gen4_bind_bo(sna,
op->dst.bo, op->dst.width, op->dst.height,
gen4_get_dest_format(op->dst.format),
true);
binding_table[1] =
gen4_bind_bo(sna,
op->src.bo, 1, 1,
GEN4_SURFACEFORMAT_B8G8R8A8_UNORM,
false);
if (sna->kgem.surface == offset &&
*(uint64_t *)(sna->kgem.batch + sna->render_state.gen4.surface_table) == *(uint64_t*)binding_table) {
sna->kgem.surface +=
sizeof(struct gen4_surface_state_padded)/sizeof(uint32_t);
offset = sna->render_state.gen4.surface_table;
}
gen4_emit_state(sna, op, offset);
}
static void
gen4_render_fill_rectangle(struct sna *sna,
const struct sna_composite_op *op,
int x, int y, int w, int h)
{
gen4_get_rectangles(sna, op, 1, gen4_fill_bind_surfaces);
OUT_VERTEX(x+w, y+h);
OUT_VERTEX_F(1);
OUT_VERTEX_F(1);
OUT_VERTEX(x, y+h);
OUT_VERTEX_F(0);
OUT_VERTEX_F(1);
OUT_VERTEX(x, y);
OUT_VERTEX_F(0);
OUT_VERTEX_F(0);
FLUSH(op);
}
static bool
gen4_render_fill_boxes(struct sna *sna,
CARD8 op,
PictFormat format,
const xRenderColor *color,
PixmapPtr dst, struct kgem_bo *dst_bo,
const BoxRec *box, int n)
{
struct sna_composite_op tmp;
uint32_t pixel;
if (op >= ARRAY_SIZE(gen4_blend_op)) {
DBG(("%s: fallback due to unhandled blend op: %d\n",
__FUNCTION__, op));
return false;
}
if (op <= PictOpSrc &&
(prefer_blt(sna) ||
too_large(dst->drawable.width, dst->drawable.height) ||
!gen4_check_dst_format(format))) {
uint8_t alu = GXinvalid;
pixel = 0;
if (op == PictOpClear)
alu = GXclear;
else if (sna_get_pixel_from_rgba(&pixel,
color->red,
color->green,
color->blue,
color->alpha,
format))
alu = GXcopy;
if (alu != GXinvalid &&
sna_blt_fill_boxes(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
pixel, box, n))
return true;
if (!gen4_check_dst_format(format))
return false;
if (too_large(dst->drawable.width, dst->drawable.height))
return sna_tiling_fill_boxes(sna, op, format, color,
dst, dst_bo, box, n);
}
#if NO_FILL_BOXES
return false;
#endif
if (op == PictOpClear)
pixel = 0;
else if (!sna_get_pixel_from_rgba(&pixel,
color->red,
color->green,
color->blue,
color->alpha,
PICT_a8r8g8b8))
return false;
DBG(("%s(%08x x %d)\n", __FUNCTION__, pixel, n));
memset(&tmp, 0, sizeof(tmp));
tmp.op = op;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.format = format;
tmp.dst.bo = dst_bo;
tmp.src.bo = sna_render_get_solid(sna, pixel);
tmp.src.filter = SAMPLER_FILTER_NEAREST;
tmp.src.repeat = SAMPLER_EXTEND_REPEAT;
tmp.is_affine = true;
tmp.floats_per_vertex = 3;
tmp.u.gen4.wm_kernel = WM_KERNEL;
tmp.u.gen4.ve_id = 1;
if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) {
kgem_submit(&sna->kgem);
assert(kgem_check_bo(&sna->kgem, dst_bo, NULL));
}
gen4_fill_bind_surfaces(sna, &tmp);
gen4_align_vertex(sna, &tmp);
do {
gen4_render_fill_rectangle(sna, &tmp,
box->x1, box->y1,
box->x2 - box->x1,
box->y2 - box->y1);
box++;
} while (--n);
kgem_bo_destroy(&sna->kgem, tmp.src.bo);
return true;
}
static void
gen4_render_fill_op_blt(struct sna *sna, const struct sna_fill_op *op,
int16_t x, int16_t y, int16_t w, int16_t h)
{
gen4_render_fill_rectangle(sna, &op->base, x, y, w, h);
}
fastcall static void
gen4_render_fill_op_box(struct sna *sna,
const struct sna_fill_op *op,
const BoxRec *box)
{
gen4_render_fill_rectangle(sna, &op->base,
box->x1, box->y1,
box->x2-box->x1, box->y2-box->y1);
}
fastcall static void
gen4_render_fill_op_boxes(struct sna *sna,
const struct sna_fill_op *op,
const BoxRec *box,
int nbox)
{
do {
gen4_render_fill_rectangle(sna, &op->base,
box->x1, box->y1,
box->x2-box->x1, box->y2-box->y1);
box++;
} while (--nbox);
}
static void
gen4_render_fill_op_done(struct sna *sna, const struct sna_fill_op *op)
{
if (sna->render_state.gen4.vertex_offset)
gen4_vertex_flush(sna);
kgem_bo_destroy(&sna->kgem, op->base.src.bo);
}
static bool
gen4_render_fill(struct sna *sna, uint8_t alu,
PixmapPtr dst, struct kgem_bo *dst_bo,
uint32_t color,
struct sna_fill_op *op)
{
#if NO_FILL
return sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
op);
#endif
if (prefer_blt(sna) &&
sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
op))
return true;
if (!(alu == GXcopy || alu == GXclear) ||
too_large(dst->drawable.width, dst->drawable.height))
return sna_blt_fill(sna, alu,
dst_bo, dst->drawable.bitsPerPixel,
color,
op);
if (alu == GXclear)
color = 0;
op->base.op = color == 0 ? PictOpClear : PictOpSrc;
op->base.dst.pixmap = dst;
op->base.dst.width = dst->drawable.width;
op->base.dst.height = dst->drawable.height;
op->base.dst.format = sna_format_for_depth(dst->drawable.depth);
op->base.dst.bo = dst_bo;
op->base.dst.x = op->base.dst.y = 0;
op->base.src.bo =
sna_render_get_solid(sna,
sna_rgba_for_color(color,
dst->drawable.depth));
op->base.src.filter = SAMPLER_FILTER_NEAREST;
op->base.src.repeat = SAMPLER_EXTEND_REPEAT;
op->base.mask.bo = NULL;
op->base.mask.filter = SAMPLER_FILTER_NEAREST;
op->base.mask.repeat = SAMPLER_EXTEND_NONE;
op->base.is_affine = true;
op->base.floats_per_vertex = 3;
op->base.need_magic_ca_pass = 0;
op->base.has_component_alpha = 0;
op->base.u.gen4.wm_kernel = WM_KERNEL;
op->base.u.gen4.ve_id = 1;
if (!kgem_check_bo(&sna->kgem, dst_bo, NULL)) {
kgem_submit(&sna->kgem);
assert(kgem_check_bo(&sna->kgem, dst_bo, NULL));
}
gen4_fill_bind_surfaces(sna, &op->base);
gen4_align_vertex(sna, &op->base);
op->blt = gen4_render_fill_op_blt;
op->box = gen4_render_fill_op_box;
op->boxes = gen4_render_fill_op_boxes;
op->done = gen4_render_fill_op_done;
return true;
}
static bool
gen4_render_fill_one_try_blt(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo,
uint32_t color,
int16_t x1, int16_t y1, int16_t x2, int16_t y2,
uint8_t alu)
{
BoxRec box;
box.x1 = x1;
box.y1 = y1;
box.x2 = x2;
box.y2 = y2;
return sna_blt_fill_boxes(sna, alu,
bo, dst->drawable.bitsPerPixel,
color, &box, 1);
}
static bool
gen4_render_fill_one(struct sna *sna, PixmapPtr dst, struct kgem_bo *bo,
uint32_t color,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2,
uint8_t alu)
{
struct sna_composite_op tmp;
DBG(("%s: color=%08x\n", __FUNCTION__, color));
#if NO_FILL_ONE
return gen4_render_fill_one_try_blt(sna, dst, bo, color,
x1, y1, x2, y2, alu);
#endif
if (gen4_render_fill_one_try_blt(sna, dst, bo, color,
x1, y1, x2, y2, alu))
return true;
/* Must use the BLT if we can't RENDER... */
if (!(alu == GXcopy || alu == GXclear) ||
too_large(dst->drawable.width, dst->drawable.height))
return false;
if (alu == GXclear)
color = 0;
tmp.op = color == 0 ? PictOpClear : PictOpSrc;
tmp.dst.pixmap = dst;
tmp.dst.width = dst->drawable.width;
tmp.dst.height = dst->drawable.height;
tmp.dst.format = sna_format_for_depth(dst->drawable.depth);
tmp.dst.bo = bo;
tmp.dst.x = tmp.dst.y = 0;
tmp.src.bo =
sna_render_get_solid(sna,
sna_rgba_for_color(color,
dst->drawable.depth));
tmp.src.filter = SAMPLER_FILTER_NEAREST;
tmp.src.repeat = SAMPLER_EXTEND_REPEAT;
tmp.mask.bo = NULL;
tmp.mask.filter = SAMPLER_FILTER_NEAREST;
tmp.mask.repeat = SAMPLER_EXTEND_NONE;
tmp.is_affine = true;
tmp.floats_per_vertex = 3;
tmp.has_component_alpha = 0;
tmp.need_magic_ca_pass = false;
tmp.u.gen4.wm_kernel = WM_KERNEL;
tmp.u.gen4.ve_id = 1;
if (!kgem_check_bo(&sna->kgem, bo, NULL)) {
_kgem_submit(&sna->kgem);
assert(kgem_check_bo(&sna->kgem, bo, NULL));
}
gen4_fill_bind_surfaces(sna, &tmp);
gen4_align_vertex(sna, &tmp);
gen4_render_fill_rectangle(sna, &tmp, x1, y1, x2 - x1, y2 - y1);
if (sna->render_state.gen4.vertex_offset)
gen4_vertex_flush(sna);
kgem_bo_destroy(&sna->kgem, tmp.src.bo);
return true;
}
static void
gen4_render_flush(struct sna *sna)
{
gen4_vertex_close(sna);
}
static void
discard_vbo(struct sna *sna)
{
kgem_bo_destroy(&sna->kgem, sna->render.vbo);
sna->render.vbo = NULL;
sna->render.vertices = sna->render.vertex_data;
sna->render.vertex_size = ARRAY_SIZE(sna->render.vertex_data);
sna->render.vertex_used = 0;
sna->render.vertex_index = 0;
}
static void gen4_render_reset(struct sna *sna)
{
sna->render_state.gen4.needs_invariant = true;
sna->render_state.gen4.needs_urb = true;
sna->render_state.gen4.vb_id = 0;
sna->render_state.gen4.ve_id = -1;
sna->render_state.gen4.last_primitive = -1;
sna->render_state.gen4.last_pipelined_pointers = -1;
sna->render_state.gen4.drawrect_offset = -1;
sna->render_state.gen4.drawrect_limit = -1;
sna->render_state.gen4.surface_table = -1;
if (sna->render.vbo &&
!kgem_bo_is_mappable(&sna->kgem, sna->render.vbo)) {
DBG(("%s: discarding unmappable vbo\n", __FUNCTION__));
discard_vbo(sna);
}
}
static void gen4_render_fini(struct sna *sna)
{
kgem_bo_destroy(&sna->kgem, sna->render_state.gen4.general_bo);
}
static uint32_t gen4_create_vs_unit_state(struct sna_static_stream *stream)
{
struct gen4_vs_unit_state *vs = sna_static_stream_map(stream, sizeof(*vs), 32);
/* Set up the vertex shader to be disabled (passthrough) */
vs->thread4.nr_urb_entries = URB_VS_ENTRIES;
vs->thread4.urb_entry_allocation_size = URB_VS_ENTRY_SIZE - 1;
vs->vs6.vs_enable = 0;
vs->vs6.vert_cache_disable = 1;
return sna_static_stream_offsetof(stream, vs);
}
static uint32_t gen4_create_sf_state(struct sna_static_stream *stream,
uint32_t kernel)
{
struct gen4_sf_unit_state *sf_state;
sf_state = sna_static_stream_map(stream, sizeof(*sf_state), 32);
sf_state->thread0.grf_reg_count = GEN4_GRF_BLOCKS(SF_KERNEL_NUM_GRF);
sf_state->thread0.kernel_start_pointer = kernel >> 6;
sf_state->sf1.single_program_flow = 1;
/* scratch space is not used in our kernel */
sf_state->thread2.scratch_space_base_pointer = 0;
sf_state->thread3.const_urb_entry_read_length = 0; /* no const URBs */
sf_state->thread3.const_urb_entry_read_offset = 0; /* no const URBs */
sf_state->thread3.urb_entry_read_length = 1; /* 1 URB per vertex */
/* don't smash vertex header, read start from dw8 */
sf_state->thread3.urb_entry_read_offset = 1;
sf_state->thread3.dispatch_grf_start_reg = 3;
sf_state->thread4.max_threads = SF_MAX_THREADS - 1;
sf_state->thread4.urb_entry_allocation_size = URB_SF_ENTRY_SIZE - 1;
sf_state->thread4.nr_urb_entries = URB_SF_ENTRIES;
sf_state->sf5.viewport_transform = false; /* skip viewport */
sf_state->sf6.cull_mode = GEN4_CULLMODE_NONE;
sf_state->sf6.scissor = 0;
sf_state->sf7.trifan_pv = 2;
sf_state->sf6.dest_org_vbias = 0x8;
sf_state->sf6.dest_org_hbias = 0x8;
return sna_static_stream_offsetof(stream, sf_state);
}
static uint32_t gen4_create_sampler_state(struct sna_static_stream *stream,
sampler_filter_t src_filter,
sampler_extend_t src_extend,
sampler_filter_t mask_filter,
sampler_extend_t mask_extend)
{
struct gen4_sampler_state *sampler_state;
sampler_state = sna_static_stream_map(stream,
sizeof(struct gen4_sampler_state) * 2,
32);
sampler_state_init(&sampler_state[0], src_filter, src_extend);
sampler_state_init(&sampler_state[1], mask_filter, mask_extend);
return sna_static_stream_offsetof(stream, sampler_state);
}
static void gen4_init_wm_state(struct gen4_wm_unit_state *state,
bool has_mask,
uint32_t kernel,
uint32_t sampler)
{
state->thread0.grf_reg_count = GEN4_GRF_BLOCKS(PS_KERNEL_NUM_GRF);
state->thread0.kernel_start_pointer = kernel >> 6;
state->thread1.single_program_flow = 0;
/* scratch space is not used in our kernel */
state->thread2.scratch_space_base_pointer = 0;
state->thread2.per_thread_scratch_space = 0;
state->thread3.const_urb_entry_read_length = 0;
state->thread3.const_urb_entry_read_offset = 0;
state->thread3.urb_entry_read_offset = 0;
/* wm kernel use urb from 3, see wm_program in compiler module */
state->thread3.dispatch_grf_start_reg = 3; /* must match kernel */
state->wm4.sampler_count = 1; /* 1-4 samplers */
state->wm4.sampler_state_pointer = sampler >> 5;
state->wm5.max_threads = PS_MAX_THREADS - 1;
state->wm5.transposed_urb_read = 0;
state->wm5.thread_dispatch_enable = 1;
/* just use 16-pixel dispatch (4 subspans), don't need to change kernel
* start point
*/
state->wm5.enable_16_pix = 1;
state->wm5.enable_8_pix = 0;
state->wm5.early_depth_test = 1;
/* Each pair of attributes (src/mask coords) is two URB entries */
if (has_mask) {
state->thread1.binding_table_entry_count = 3; /* 2 tex and fb */
state->thread3.urb_entry_read_length = 4;
} else {
state->thread1.binding_table_entry_count = 2; /* 1 tex and fb */
state->thread3.urb_entry_read_length = 2;
}
}
static uint32_t gen4_create_cc_viewport(struct sna_static_stream *stream)
{
struct gen4_cc_viewport vp;
vp.min_depth = -1.e35;
vp.max_depth = 1.e35;
return sna_static_stream_add(stream, &vp, sizeof(vp), 32);
}
static uint32_t gen4_create_cc_unit_state(struct sna_static_stream *stream)
{
uint8_t *ptr, *base;
uint32_t vp;
int i, j;
vp = gen4_create_cc_viewport(stream);
base = ptr =
sna_static_stream_map(stream,
GEN4_BLENDFACTOR_COUNT*GEN4_BLENDFACTOR_COUNT*64,
64);
for (i = 0; i < GEN4_BLENDFACTOR_COUNT; i++) {
for (j = 0; j < GEN4_BLENDFACTOR_COUNT; j++) {
struct gen4_cc_unit_state *state =
(struct gen4_cc_unit_state *)ptr;
state->cc3.blend_enable =
!(j == GEN4_BLENDFACTOR_ZERO && i == GEN4_BLENDFACTOR_ONE);
state->cc4.cc_viewport_state_offset = vp >> 5;
state->cc5.logicop_func = 0xc; /* COPY */
state->cc5.ia_blend_function = GEN4_BLENDFUNCTION_ADD;
/* Fill in alpha blend factors same as color, for the future. */
state->cc5.ia_src_blend_factor = i;
state->cc5.ia_dest_blend_factor = j;
state->cc6.blend_function = GEN4_BLENDFUNCTION_ADD;
state->cc6.clamp_post_alpha_blend = 1;
state->cc6.clamp_pre_alpha_blend = 1;
state->cc6.src_blend_factor = i;
state->cc6.dest_blend_factor = j;
ptr += 64;
}
}
return sna_static_stream_offsetof(stream, base);
}
static bool gen4_render_setup(struct sna *sna)
{
struct gen4_render_state *state = &sna->render_state.gen4;
struct sna_static_stream general;
struct gen4_wm_unit_state_padded *wm_state;
uint32_t sf[2], wm[KERNEL_COUNT];
int i, j, k, l, m;
sna_static_stream_init(&general);
/* Zero pad the start. If you see an offset of 0x0 in the batchbuffer
* dumps, you know it points to zero.
*/
null_create(&general);
/* Set up the two SF states (one for blending with a mask, one without) */
sf[0] = sna_static_stream_add(&general,
sf_kernel,
sizeof(sf_kernel),
64);
sf[1] = sna_static_stream_add(&general,
sf_kernel_mask,
sizeof(sf_kernel_mask),
64);
for (m = 0; m < KERNEL_COUNT; m++) {
wm[m] = sna_static_stream_add(&general,
wm_kernels[m].data,
wm_kernels[m].size,
64);
}
state->vs = gen4_create_vs_unit_state(&general);
state->sf[0] = gen4_create_sf_state(&general, sf[0]);
state->sf[1] = gen4_create_sf_state(&general, sf[1]);
/* Set up the WM states: each filter/extend type for source and mask, per
* kernel.
*/
wm_state = sna_static_stream_map(&general,
sizeof(*wm_state) * KERNEL_COUNT *
FILTER_COUNT * EXTEND_COUNT *
FILTER_COUNT * EXTEND_COUNT,
64);
state->wm = sna_static_stream_offsetof(&general, wm_state);
for (i = 0; i < FILTER_COUNT; i++) {
for (j = 0; j < EXTEND_COUNT; j++) {
for (k = 0; k < FILTER_COUNT; k++) {
for (l = 0; l < EXTEND_COUNT; l++) {
uint32_t sampler_state;
sampler_state =
gen4_create_sampler_state(&general,
i, j,
k, l);
for (m = 0; m < KERNEL_COUNT; m++) {
gen4_init_wm_state(&wm_state->state,
wm_kernels[m].has_mask,
wm[m],
sampler_state);
wm_state++;
}
}
}
}
}
state->cc = gen4_create_cc_unit_state(&general);
state->general_bo = sna_static_stream_fini(sna, &general);
return state->general_bo != NULL;
}
bool gen4_render_init(struct sna *sna)
{
if (!gen4_render_setup(sna))
return false;
sna->render.composite = gen4_render_composite;
#if !NO_COMPOSITE_SPANS
sna->render.check_composite_spans = gen4_check_composite_spans;
sna->render.composite_spans = gen4_render_composite_spans;
#endif
sna->render.video = gen4_render_video;
sna->render.copy_boxes = gen4_render_copy_boxes;
sna->render.copy = gen4_render_copy;
sna->render.fill_boxes = gen4_render_fill_boxes;
sna->render.fill = gen4_render_fill;
sna->render.fill_one = gen4_render_fill_one;
sna->render.flush = gen4_render_flush;
sna->render.reset = gen4_render_reset;
sna->render.fini = gen4_render_fini;
sna->render.max_3d_size = GEN4_MAX_3D_SIZE;
sna->render.max_3d_pitch = 1 << 18;
return true;
}