xf86-video-intel/src/i830_display.c

1419 lines
40 KiB
C

/* -*- c-basic-offset: 4 -*- */
/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include <math.h>
#include "xf86.h"
#include "i830.h"
#include "i830_bios.h"
#include "i830_display.h"
#include "i830_debug.h"
#include "xf86Modes.h"
typedef struct {
/* given values */
int n;
int m1, m2;
int p1, p2;
/* derived values */
int dot;
int vco;
int m;
int p;
} intel_clock_t;
typedef struct {
int min, max;
} intel_range_t;
typedef struct {
int dot_limit;
int p2_slow, p2_fast;
} intel_p2_t;
#define INTEL_P2_NUM 2
typedef struct {
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
} intel_limit_t;
#define I8XX_DOT_MIN 25000
#define I8XX_DOT_MAX 350000
#define I8XX_VCO_MIN 930000
#define I8XX_VCO_MAX 1400000
#define I8XX_N_MIN 3
#define I8XX_N_MAX 16
#define I8XX_M_MIN 96
#define I8XX_M_MAX 140
#define I8XX_M1_MIN 18
#define I8XX_M1_MAX 26
#define I8XX_M2_MIN 6
#define I8XX_M2_MAX 16
#define I8XX_P_MIN 4
#define I8XX_P_MAX 128
#define I8XX_P1_MIN 2
#define I8XX_P1_MAX 33
#define I8XX_P1_LVDS_MIN 1
#define I8XX_P1_LVDS_MAX 6
#define I8XX_P2_SLOW 4
#define I8XX_P2_FAST 2
#define I8XX_P2_LVDS_SLOW 14
#define I8XX_P2_LVDS_FAST 14 /* No fast option */
#define I8XX_P2_SLOW_LIMIT 165000
#define I9XX_DOT_MIN 20000
#define I9XX_DOT_MAX 400000
#define I9XX_VCO_MIN 1400000
#define I9XX_VCO_MAX 2800000
#define I9XX_N_MIN 3
#define I9XX_N_MAX 8
#define I9XX_M_MIN 70
#define I9XX_M_MAX 120
#define I9XX_M1_MIN 10
#define I9XX_M1_MAX 20
#define I9XX_M2_MIN 5
#define I9XX_M2_MAX 9
#define I9XX_P_SDVO_DAC_MIN 5
#define I9XX_P_SDVO_DAC_MAX 80
#define I9XX_P_LVDS_MIN 7
#define I9XX_P_LVDS_MAX 98
#define I9XX_P1_MIN 1
#define I9XX_P1_MAX 8
#define I9XX_P2_SDVO_DAC_SLOW 10
#define I9XX_P2_SDVO_DAC_FAST 5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
#define I9XX_P2_LVDS_SLOW 14
#define I9XX_P2_LVDS_FAST 7
#define I9XX_P2_LVDS_SLOW_LIMIT 112000
#define INTEL_LIMIT_I8XX_DVO_DAC 0
#define INTEL_LIMIT_I8XX_LVDS 1
#define INTEL_LIMIT_I9XX_SDVO_DAC 2
#define INTEL_LIMIT_I9XX_LVDS 3
static const intel_limit_t intel_limits[] = {
{ /* INTEL_LIMIT_I8XX_DVO_DAC */
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
},
{ /* INTEL_LIMIT_I8XX_LVDS */
.dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
.vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
.n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
.m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
.m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
.m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
.p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
.p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
.p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
.p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
},
{ /* INTEL_LIMIT_I9XX_SDVO_DAC */
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
.p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
.p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
},
{ /* INTEL_LIMIT_I9XX_LVDS */
.dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
.vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
.n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
.m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
.m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
.m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
.p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
.p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
/* The single-channel range is 25-112Mhz, and dual-channel
* is 80-224Mhz. Prefer single channel as much as possible.
*/
.p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
.p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
},
};
static const intel_limit_t *intel_limit (xf86CrtcPtr crtc)
{
ScrnInfoPtr pScrn = crtc->scrn;
I830Ptr pI830 = I830PTR(pScrn);
const intel_limit_t *limit;
if (IS_I9XX(pI830)) {
if (i830PipeHasType (crtc, I830_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
else
limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
} else {
if (i830PipeHasType (crtc, I830_OUTPUT_LVDS))
limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
else
limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
}
return limit;
}
/** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
static void i8xx_clock(int refclk, intel_clock_t *clock)
{
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
/** Derive the pixel clock for the given refclk and divisors for 9xx chips. */
static void i9xx_clock(int refclk, intel_clock_t *clock)
{
clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
clock->p = clock->p1 * clock->p2;
clock->vco = refclk * clock->m / (clock->n + 2);
clock->dot = clock->vco / clock->p;
}
static void intel_clock(I830Ptr pI830, int refclk, intel_clock_t *clock)
{
if (IS_I9XX(pI830))
return i9xx_clock (refclk, clock);
else
return i8xx_clock (refclk, clock);
}
static void
i830PrintPll(char *prefix, intel_clock_t *clock)
{
ErrorF("%s: dotclock %d vco %d ((m %d, m1 %d, m2 %d), n %d, (p %d, p1 %d, p2 %d))\n",
prefix, clock->dot, clock->vco,
clock->m, clock->m1, clock->m2,
clock->n,
clock->p, clock->p1, clock->p2);
}
/**
* Returns whether any output on the specified pipe is of the specified type
*/
Bool
i830PipeHasType (xf86CrtcPtr crtc, int type)
{
ScrnInfoPtr pScrn = crtc->scrn;
xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn);
int i;
for (i = 0; i < xf86_config->num_output; i++)
{
xf86OutputPtr output = xf86_config->output[i];
if (output->crtc == crtc)
{
I830OutputPrivatePtr intel_output = output->driver_private;
if (intel_output->type == type)
return TRUE;
}
}
return FALSE;
}
#define i830PllInvalid(s) { /* ErrorF (s) */; return FALSE; }
/**
* Returns whether the given set of divisors are valid for a given refclk with
* the given outputs.
*/
static Bool
i830PllIsValid(xf86CrtcPtr crtc, intel_clock_t *clock)
{
const intel_limit_t *limit = intel_limit (crtc);
if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
i830PllInvalid ("p1 out of range\n");
if (clock->p < limit->p.min || limit->p.max < clock->p)
i830PllInvalid ("p out of range\n");
if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
i830PllInvalid ("m2 out of range\n");
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
i830PllInvalid ("m1 out of range\n");
if (clock->m1 <= clock->m2)
i830PllInvalid ("m1 <= m2\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
i830PllInvalid ("m out of range\n");
if (clock->n < limit->n.min || limit->n.max < clock->n)
i830PllInvalid ("n out of range\n");
if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
i830PllInvalid ("vco out of range\n");
/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
* output, etc., rather than just a single range.
*/
if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
i830PllInvalid ("dot out of range\n");
return TRUE;
}
/**
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
static Bool
i830FindBestPLL(xf86CrtcPtr crtc, int target, int refclk, intel_clock_t *best_clock)
{
ScrnInfoPtr pScrn = crtc->scrn;
I830Ptr pI830 = I830PTR(pScrn);
intel_clock_t clock;
const intel_limit_t *limit = intel_limit (crtc);
int err = target;
if (IS_I9XX(pI830) && i830PipeHasType(crtc, I830_OUTPUT_LVDS) &&
(INREG(LVDS) & LVDS_PORT_EN) != 0)
{
/* For LVDS, if the panel is on, just rely on its current settings for
* dual-channel. We haven't figured out how to reliably set up
* different single/dual channel state, if we even can.
*/
if ((INREG(LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset (best_clock, 0, sizeof (*best_clock));
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++)
{
for (clock.m2 = limit->m2.min; clock.m2 < clock.m1 && clock.m2 <= limit->m2.max; clock.m2++)
{
for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++)
{
for (clock.p1 = limit->p1.min; clock.p1 <= limit->p1.max; clock.p1++)
{
int this_err;
intel_clock (pI830, refclk, &clock);
if (!i830PllIsValid(crtc, &clock))
continue;
this_err = abs(clock.dot - target);
if (this_err < err) {
*best_clock = clock;
err = this_err;
}
}
}
}
}
return (err != target);
}
void
i830WaitForVblank(ScrnInfoPtr pScreen)
{
/* Wait for 20ms, i.e. one cycle at 50hz. */
usleep(20000);
}
void
i830PipeSetBase(xf86CrtcPtr crtc, int x, int y)
{
ScrnInfoPtr pScrn = crtc->scrn;
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
int pipe = intel_crtc->pipe;
unsigned long Start, Offset;
int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
Offset = ((y * pScrn->displayWidth + x) * pI830->cpp);
if (pI830->front_buffer == NULL) {
/* During startup we may be called as part of monitor detection while
* there is no memory allocation done, so just supply a dummy base
* address.
*/
Start = 0;
} else if (crtc->rotatedData != NULL) {
/* offset is done by shadow painting code, not here */
Start = (char *)crtc->rotatedData - (char *)pI830->FbBase;
Offset = 0;
} else if (I830IsPrimary(pScrn)) {
Start = pI830->front_buffer->offset;
} else {
I830Ptr pI8301 = I830PTR(pI830->entityPrivate->pScrn_1);
Start = pI8301->front_buffer_2->offset;
}
if (IS_I965G(pI830)) {
OUTREG(dspbase, Offset);
POSTING_READ(dspbase);
OUTREG(dspsurf, Start);
POSTING_READ(dspsurf);
} else {
OUTREG(dspbase, Start + Offset);
POSTING_READ(dspbase);
}
#ifdef XF86DRI
if (pI830->directRenderingEnabled) {
drmI830Sarea *sPriv = (drmI830Sarea *) DRIGetSAREAPrivate(pScrn->pScreen);
if (!sPriv)
return;
switch (pipe) {
case 0:
sPriv->pipeA_x = x;
sPriv->pipeA_y = y;
break;
case 1:
sPriv->pipeB_x = x;
sPriv->pipeB_y = y;
break;
default:
xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
"Can't update pipe %d in SAREA\n", pipe);
break;
}
}
#endif
}
/**
* Sets the power management mode of the pipe and plane.
*
* This code should probably grow support for turning the cursor off and back
* on appropriately at the same time as we're turning the pipe off/on.
*/
static void
i830_crtc_dpms(xf86CrtcPtr crtc, int mode)
{
ScrnInfoPtr pScrn = crtc->scrn;
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
int pipe = intel_crtc->pipe;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
CARD32 temp;
/* XXX: When our outputs are all unaware of DPMS modes other than off and
* on, we should map those modes to DPMSModeOff in the CRTC.
*/
switch (mode) {
case DPMSModeOn:
case DPMSModeStandby:
case DPMSModeSuspend:
/* Enable the DPLL */
temp = INREG(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) == 0)
{
OUTREG(dpll_reg, temp);
POSTING_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
usleep(150);
OUTREG(dpll_reg, temp | DPLL_VCO_ENABLE);
POSTING_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
usleep(150);
OUTREG(dpll_reg, temp | DPLL_VCO_ENABLE);
POSTING_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
usleep(150);
}
/* Enable the pipe */
temp = INREG(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) == 0)
OUTREG(pipeconf_reg, temp | PIPEACONF_ENABLE);
/* Enable the plane */
temp = INREG(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) == 0)
{
OUTREG(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
OUTREG(dspbase_reg, INREG(dspbase_reg));
}
i830_crtc_load_lut(crtc);
/* Give the overlay scaler a chance to enable if it's on this pipe */
i830_crtc_dpms_video(crtc, TRUE);
break;
case DPMSModeOff:
/* Give the overlay scaler a chance to disable if it's on this pipe */
i830_crtc_dpms_video(crtc, FALSE);
/* Disable the VGA plane that we never use */
OUTREG(VGACNTRL, VGA_DISP_DISABLE);
/* Disable display plane */
temp = INREG(dspcntr_reg);
if ((temp & DISPLAY_PLANE_ENABLE) != 0)
{
OUTREG(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
/* Flush the plane changes */
OUTREG(dspbase_reg, INREG(dspbase_reg));
POSTING_READ(dspbase_reg);
}
if (!IS_I9XX(pI830)) {
/* Wait for vblank for the disable to take effect */
i830WaitForVblank(pScrn);
}
/* Next, disable display pipes */
temp = INREG(pipeconf_reg);
if ((temp & PIPEACONF_ENABLE) != 0) {
OUTREG(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
POSTING_READ(pipeconf_reg);
}
/* Wait for vblank for the disable to take effect. */
i830WaitForVblank(pScrn);
temp = INREG(dpll_reg);
if ((temp & DPLL_VCO_ENABLE) != 0) {
OUTREG(dpll_reg, temp & ~DPLL_VCO_ENABLE);
POSTING_READ(dpll_reg);
}
/* Wait for the clocks to turn off. */
usleep(150);
break;
}
#ifdef XF86DRI
if (pI830->directRenderingEnabled) {
drmI830Sarea *sPriv = (drmI830Sarea *) DRIGetSAREAPrivate(pScrn->pScreen);
Bool enabled = crtc->enabled && mode != DPMSModeOff;
if (!sPriv)
return;
switch (pipe) {
case 0:
sPriv->pipeA_w = enabled ? crtc->mode.HDisplay : 0;
sPriv->pipeA_h = enabled ? crtc->mode.VDisplay : 0;
break;
case 1:
sPriv->pipeB_w = enabled ? crtc->mode.HDisplay : 0;
sPriv->pipeB_h = enabled ? crtc->mode.VDisplay : 0;
break;
default:
xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
"Can't update pipe %d in SAREA\n", pipe);
break;
}
}
#endif
}
static Bool
i830_crtc_lock (xf86CrtcPtr crtc)
{
/* Sync the engine before mode switch */
i830WaitSync(crtc->scrn);
#ifdef XF86DRI
return I830DRILock(crtc->scrn);
#else
return FALSE;
#endif
}
static void
i830_crtc_unlock (xf86CrtcPtr crtc)
{
#ifdef XF86DRI
I830DRIUnlock (crtc->scrn);
#endif
}
static void
i830_crtc_prepare (xf86CrtcPtr crtc)
{
crtc->funcs->dpms (crtc, DPMSModeOff);
}
static void
i830_crtc_commit (xf86CrtcPtr crtc)
{
crtc->funcs->dpms (crtc, DPMSModeOn);
if (crtc->scrn->pScreen != NULL)
xf86_reload_cursors (crtc->scrn->pScreen);
}
void
i830_output_prepare (xf86OutputPtr output)
{
output->funcs->dpms (output, DPMSModeOff);
}
void
i830_output_commit (xf86OutputPtr output)
{
output->funcs->dpms (output, DPMSModeOn);
}
static Bool
i830_crtc_mode_fixup(xf86CrtcPtr crtc, DisplayModePtr mode,
DisplayModePtr adjusted_mode)
{
return TRUE;
}
/** Returns the core display clock speed for i830 - i945 */
static int
i830_get_core_clock_speed(ScrnInfoPtr pScrn)
{
I830Ptr pI830 = I830PTR(pScrn);
/* Core clock values taken from the published datasheets.
* The 830 may go up to 166 Mhz, which we should check.
*/
if (IS_I945G(pI830))
return 400000;
else if (IS_I915G(pI830))
return 333000;
else if (IS_I945GM(pI830) || IS_845G(pI830))
return 200000;
else if (IS_I915GM(pI830)) {
CARD16 gcfgc = pciReadWord(pI830->PciTag, I915_GCFGC);
if (gcfgc & I915_LOW_FREQUENCY_ENABLE)
return 133000;
else {
switch (gcfgc & I915_DISPLAY_CLOCK_MASK) {
case I915_DISPLAY_CLOCK_333_MHZ:
return 333000;
default:
case I915_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
}
}
} else if (IS_I865G(pI830))
return 266000;
else if (IS_I855(pI830)) {
PCITAG bridge = pciTag(0, 0, 0); /* This is always the host bridge */
CARD16 hpllcc = pciReadWord(bridge, I855_HPLLCC);
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & I855_CLOCK_CONTROL_MASK) {
case I855_CLOCK_133_200:
case I855_CLOCK_100_200:
return 200000;
case I855_CLOCK_166_250:
return 250000;
case I855_CLOCK_100_133:
return 133000;
}
} else /* 852, 830 */
return 133000;
return 0; /* Silence gcc warning */
}
/**
* Return the pipe currently connected to the panel fitter,
* or -1 if the panel fitter is not present or not in use
*/
static int
i830_panel_fitter_pipe (I830Ptr pI830)
{
CARD32 pfit_control;
/* i830 doesn't have a panel fitter */
if (IS_I830(pI830))
return -1;
pfit_control = INREG(PFIT_CONTROL);
/* See if the panel fitter is in use */
if ((pfit_control & PFIT_ENABLE) == 0)
return -1;
/* 965 can place panel fitter on either pipe */
if (IS_I965G(pI830))
return (pfit_control >> 29) & 0x3;
/* older chips can only use pipe 1 */
return 1;
}
/**
* Sets up registers for the given mode/adjusted_mode pair.
*
* The clocks, CRTCs and outputs attached to this CRTC must be off.
*
* This shouldn't enable any clocks, CRTCs, or outputs, but they should
* be easily turned on/off after this.
*/
static void
i830_crtc_mode_set(xf86CrtcPtr crtc, DisplayModePtr mode,
DisplayModePtr adjusted_mode,
int x, int y)
{
ScrnInfoPtr pScrn = crtc->scrn;
xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn);
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
int pipe = intel_crtc->pipe;
int fp_reg = (pipe == 0) ? FPA0 : FPB0;
int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
int dspstride_reg = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
int i;
int refclk;
intel_clock_t clock;
CARD32 dpll = 0, fp = 0, dspcntr, pipeconf;
Bool ok, is_sdvo = FALSE, is_dvo = FALSE;
Bool is_crt = FALSE, is_lvds = FALSE, is_tv = FALSE;
/* Set up some convenient bools for what outputs are connected to
* our pipe, used in DPLL setup.
*/
for (i = 0; i < xf86_config->num_output; i++) {
xf86OutputPtr output = xf86_config->output[i];
I830OutputPrivatePtr intel_output = output->driver_private;
if (output->crtc != crtc)
continue;
switch (intel_output->type) {
case I830_OUTPUT_LVDS:
is_lvds = TRUE;
break;
case I830_OUTPUT_SDVO:
is_sdvo = TRUE;
break;
case I830_OUTPUT_DVO:
is_dvo = TRUE;
break;
case I830_OUTPUT_TVOUT:
is_tv = TRUE;
break;
case I830_OUTPUT_ANALOG:
is_crt = TRUE;
break;
}
}
if (IS_I9XX(pI830)) {
refclk = 96000;
} else {
refclk = 48000;
}
ok = i830FindBestPLL(crtc, adjusted_mode->Clock, refclk, &clock);
if (!ok)
FatalError("Couldn't find PLL settings for mode!\n");
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
dpll = DPLL_VGA_MODE_DIS;
if (IS_I9XX(pI830)) {
if (is_lvds)
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
if (is_sdvo)
{
dpll |= DPLL_DVO_HIGH_SPEED;
if (IS_I945G(pI830) || IS_I945GM(pI830))
{
int sdvo_pixel_multiply = adjusted_mode->Clock / mode->Clock;
dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
}
}
/* compute bitmask from p1 value */
dpll |= (1 << (clock.p1 - 1)) << 16;
switch (clock.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
case 7:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
break;
case 10:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
break;
case 14:
dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
break;
}
if (IS_I965G(pI830))
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
} else {
if (is_lvds) {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock.p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock.p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
}
if (is_tv)
{
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
}
#if 0
else if (is_lvds)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
#endif
else
dpll |= PLL_REF_INPUT_DREFCLK;
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
switch (pScrn->bitsPerPixel) {
case 8:
dspcntr |= DISPPLANE_8BPP;
break;
case 16:
if (pScrn->depth == 15)
dspcntr |= DISPPLANE_15_16BPP;
else
dspcntr |= DISPPLANE_16BPP;
break;
case 32:
dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
break;
default:
FatalError("unknown display bpp\n");
}
if (pipe == 0)
dspcntr |= DISPPLANE_SEL_PIPE_A;
else
dspcntr |= DISPPLANE_SEL_PIPE_B;
pipeconf = INREG(pipeconf_reg);
if (pipe == 0 && !IS_I965G(pI830))
{
/* Enable pixel doubling when the dot clock is > 90% of the (display)
* core speed.
*
* XXX: No double-wide on 915GM pipe B. Is that the only reason for the
* pipe == 0 check?
*/
if (mode->Clock > i830_get_core_clock_speed(pScrn) * 9 / 10)
pipeconf |= PIPEACONF_DOUBLE_WIDE;
else
pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
}
#if 1
dspcntr |= DISPLAY_PLANE_ENABLE;
pipeconf |= PIPEACONF_ENABLE;
dpll |= DPLL_VCO_ENABLE;
#endif
/* Disable the panel fitter if it was on our pipe */
if (i830_panel_fitter_pipe (pI830) == pipe)
OUTREG(PFIT_CONTROL, 0);
#if 1
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
xf86PrintModeline(pScrn->scrnIndex, mode);
if (!xf86ModesEqual(mode, adjusted_mode)) {
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
"Adjusted mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
xf86PrintModeline(pScrn->scrnIndex, mode);
}
i830PrintPll("chosen", &clock);
#endif
if (dpll & DPLL_VCO_ENABLE)
{
OUTREG(fp_reg, fp);
OUTREG(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(dpll_reg);
usleep(150);
}
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds)
{
CARD32 lvds = INREG(LVDS);
lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (adjusted_mode->Clock >= I9XX_P2_LVDS_SLOW_LIMIT)
lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
/* Enable dithering if we're in 18-bit mode. */
if (IS_I965G(pI830))
{
if ((lvds & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
lvds |= LVDS_DITHER_ENABLE;
else
lvds &= ~LVDS_DITHER_ENABLE;
}
OUTREG(LVDS, lvds);
POSTING_READ(LVDS);
}
OUTREG(fp_reg, fp);
OUTREG(dpll_reg, dpll);
POSTING_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
usleep(150);
if (IS_I965G(pI830)) {
int sdvo_pixel_multiply = adjusted_mode->Clock / mode->Clock;
OUTREG(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
} else {
/* write it again -- the BIOS does, after all */
OUTREG(dpll_reg, dpll);
}
POSTING_READ(dpll_reg);
/* Wait for the clocks to stabilize. */
usleep(150);
OUTREG(htot_reg, (adjusted_mode->CrtcHDisplay - 1) |
((adjusted_mode->CrtcHTotal - 1) << 16));
OUTREG(hblank_reg, (adjusted_mode->CrtcHBlankStart - 1) |
((adjusted_mode->CrtcHBlankEnd - 1) << 16));
OUTREG(hsync_reg, (adjusted_mode->CrtcHSyncStart - 1) |
((adjusted_mode->CrtcHSyncEnd - 1) << 16));
OUTREG(vtot_reg, (adjusted_mode->CrtcVDisplay - 1) |
((adjusted_mode->CrtcVTotal - 1) << 16));
OUTREG(vblank_reg, (adjusted_mode->CrtcVBlankStart - 1) |
((adjusted_mode->CrtcVBlankEnd - 1) << 16));
OUTREG(vsync_reg, (adjusted_mode->CrtcVSyncStart - 1) |
((adjusted_mode->CrtcVSyncEnd - 1) << 16));
OUTREG(dspstride_reg, pScrn->displayWidth * pI830->cpp);
/* pipesrc and dspsize control the size that is scaled from, which should
* always be the user's requested size.
*/
OUTREG(dspsize_reg, ((mode->VDisplay - 1) << 16) | (mode->HDisplay - 1));
OUTREG(dsppos_reg, 0);
OUTREG(pipesrc_reg, ((mode->HDisplay - 1) << 16) | (mode->VDisplay - 1));
OUTREG(pipeconf_reg, pipeconf);
POSTING_READ(pipeconf_reg);
i830WaitForVblank(pScrn);
OUTREG(dspcntr_reg, dspcntr);
/* Flush the plane changes */
i830PipeSetBase(crtc, x, y);
#ifdef XF86DRI
I830DRISetVBlankInterrupt (pScrn, TRUE);
#endif
i830WaitForVblank(pScrn);
}
/** Loads the palette/gamma unit for the CRTC with the prepared values */
void
i830_crtc_load_lut(xf86CrtcPtr crtc)
{
ScrnInfoPtr pScrn = crtc->scrn;
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
int i;
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
return;
for (i = 0; i < 256; i++) {
OUTREG(palreg + 4 * i,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
}
}
/** Sets the color ramps on behalf of RandR */
static void
i830_crtc_gamma_set(xf86CrtcPtr crtc, CARD16 *red, CARD16 *green, CARD16 *blue,
int size)
{
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
int i;
assert(size == 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = red[i] >> 8;
intel_crtc->lut_g[i] = green[i] >> 8;
intel_crtc->lut_b[i] = blue[i] >> 8;
}
i830_crtc_load_lut(crtc);
}
/**
* Allocates memory for a locked-in-framebuffer shadow of the given
* width and height for this CRTC's rotated shadow framebuffer.
*/
static void *
i830_crtc_shadow_allocate (xf86CrtcPtr crtc, int width, int height)
{
ScrnInfoPtr pScrn = crtc->scrn;
ScreenPtr pScreen = pScrn->pScreen;
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
unsigned long rotate_pitch;
unsigned long rotate_offset;
int align = KB(4), size;
rotate_pitch = pScrn->displayWidth * pI830->cpp;
size = rotate_pitch * height;
#ifdef I830_USE_EXA
/* We could get close to what we want here by just creating a pixmap like
* normal, but we have to lock it down in framebuffer, and there is no
* setter for offscreen area locking in EXA currently. So, we just
* allocate offscreen memory and fake up a pixmap header for it.
*/
if (pI830->useEXA) {
assert(intel_crtc->rotate_mem_exa == NULL);
intel_crtc->rotate_mem_exa = exaOffscreenAlloc(pScreen, size, align,
TRUE, NULL, NULL);
if (intel_crtc->rotate_mem_exa == NULL) {
xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
"Couldn't allocate shadow memory for rotated CRTC\n");
return NULL;
}
rotate_offset = intel_crtc->rotate_mem_exa->offset;
}
#endif /* I830_USE_EXA */
#ifdef I830_USE_XAA
if (!pI830->useEXA) {
/* The XFree86 linear allocator operates in units of screen pixels,
* sadly.
*/
size = (size + pI830->cpp - 1) / pI830->cpp;
align = (align + pI830->cpp - 1) / pI830->cpp;
assert(intel_crtc->rotate_mem_xaa == NULL);
intel_crtc->rotate_mem_xaa =
i830_xf86AllocateOffscreenLinear(pScreen, size, align,
NULL, NULL, NULL);
if (intel_crtc->rotate_mem_xaa == NULL) {
xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
"Couldn't allocate shadow memory for rotated CRTC\n");
return NULL;
}
rotate_offset = pI830->front_buffer->offset +
intel_crtc->rotate_mem_xaa->offset * pI830->cpp;
}
#endif /* I830_USE_XAA */
return pI830->FbBase + rotate_offset;
}
/**
* Creates a pixmap for this CRTC's rotated shadow framebuffer.
*/
static PixmapPtr
i830_crtc_shadow_create(xf86CrtcPtr crtc, void *data, int width, int height)
{
ScrnInfoPtr pScrn = crtc->scrn;
I830Ptr pI830 = I830PTR(pScrn);
unsigned long rotate_pitch;
PixmapPtr rotate_pixmap;
if (!data)
data = i830_crtc_shadow_allocate (crtc, width, height);
rotate_pitch = pScrn->displayWidth * pI830->cpp;
rotate_pixmap = GetScratchPixmapHeader(pScrn->pScreen,
width, height,
pScrn->depth,
pScrn->bitsPerPixel,
rotate_pitch,
data);
if (rotate_pixmap == NULL) {
xf86DrvMsg(pScrn->scrnIndex, X_ERROR,
"Couldn't allocate shadow pixmap for rotated CRTC\n");
}
return rotate_pixmap;
}
static void
i830_crtc_shadow_destroy(xf86CrtcPtr crtc, PixmapPtr rotate_pixmap, void *data)
{
ScrnInfoPtr pScrn = crtc->scrn;
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
if (rotate_pixmap)
FreeScratchPixmapHeader(rotate_pixmap);
if (data)
{
#ifdef I830_USE_EXA
if (pI830->useEXA && intel_crtc->rotate_mem_exa != NULL) {
exaOffscreenFree(pScrn->pScreen, intel_crtc->rotate_mem_exa);
intel_crtc->rotate_mem_exa = NULL;
}
#endif /* I830_USE_EXA */
#ifdef I830_USE_XAA
if (!pI830->useEXA) {
xf86FreeOffscreenLinear(intel_crtc->rotate_mem_xaa);
intel_crtc->rotate_mem_xaa = NULL;
}
#endif /* I830_USE_XAA */
}
}
void
i830DescribeOutputConfiguration(ScrnInfoPtr pScrn)
{
xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn);
I830Ptr pI830 = I830PTR(pScrn);
int i;
xf86DrvMsg(pScrn->scrnIndex, X_INFO, "Output configuration:\n");
for (i = 0; i < xf86_config->num_crtc; i++) {
xf86CrtcPtr crtc = xf86_config->crtc[i];
CARD32 dspcntr = INREG(DSPACNTR + (DSPBCNTR - DSPACNTR) * i);
CARD32 pipeconf = INREG(PIPEACONF + (PIPEBCONF - PIPEACONF) * i);
Bool hw_plane_enable = (dspcntr & DISPLAY_PLANE_ENABLE) != 0;
Bool hw_pipe_enable = (pipeconf & PIPEACONF_ENABLE) != 0;
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
" Pipe %c is %s\n",
'A' + i, crtc->enabled ? "on" : "off");
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
" Display plane %c is now %s and connected to pipe %c.\n",
'A' + i,
crtc->enabled ? "enabled" : "disabled",
dspcntr & DISPPLANE_SEL_PIPE_MASK ? 'B' : 'A');
if (hw_pipe_enable != crtc->enabled) {
xf86DrvMsg(pScrn->scrnIndex, X_WARNING,
" Hardware claims pipe %c is %s while software "
"believes it is %s\n",
'A' + i, hw_pipe_enable ? "on" : "off",
crtc->enabled ? "on" : "off");
}
if (hw_plane_enable != crtc->enabled) {
xf86DrvMsg(pScrn->scrnIndex, X_WARNING,
" Hardware claims plane %c is %s while software "
"believes it is %s\n",
'A' + i, hw_plane_enable ? "on" : "off",
crtc->enabled ? "on" : "off");
}
}
for (i = 0; i < xf86_config->num_output; i++) {
xf86OutputPtr output = xf86_config->output[i];
xf86CrtcPtr crtc = output->crtc;
I830CrtcPrivatePtr intel_crtc = crtc ? crtc->driver_private : NULL;
xf86DrvMsg(pScrn->scrnIndex, X_INFO,
" Output %s is connected to pipe %s\n",
output->name, intel_crtc == NULL ? "none" :
(intel_crtc->pipe == 0 ? "A" : "B"));
}
}
/**
* Get a pipe with a simple mode set on it for doing load-based monitor
* detection.
*
* It will be up to the load-detect code to adjust the pipe as appropriate for
* its requirements. The pipe will be connected to no other outputs.
*
* Currently this code will only succeed if there is a pipe with no outputs
* configured for it. In the future, it could choose to temporarily disable
* some outputs to free up a pipe for its use.
*
* \return crtc, or NULL if no pipes are available.
*/
xf86CrtcPtr
i830GetLoadDetectPipe(xf86OutputPtr output)
{
ScrnInfoPtr pScrn = output->scrn;
xf86CrtcConfigPtr xf86_config = XF86_CRTC_CONFIG_PTR(pScrn);
I830OutputPrivatePtr intel_output = output->driver_private;
xf86CrtcPtr crtc;
int i;
if (output->crtc)
return output->crtc;
for (i = 0; i < xf86_config->num_crtc; i++)
if (!xf86CrtcInUse (xf86_config->crtc[i]))
break;
if (i == xf86_config->num_crtc)
return NULL;
crtc = xf86_config->crtc[i];
output->crtc = crtc;
intel_output->load_detect_temp = TRUE;
return crtc;
}
void
i830ReleaseLoadDetectPipe(xf86OutputPtr output)
{
ScrnInfoPtr pScrn = output->scrn;
I830OutputPrivatePtr intel_output = output->driver_private;
if (intel_output->load_detect_temp)
{
output->crtc = NULL;
intel_output->load_detect_temp = FALSE;
xf86DisableUnusedFunctions(pScrn);
}
}
/* Returns the clock of the currently programmed mode of the given pipe. */
static int
i830_crtc_clock_get(ScrnInfoPtr pScrn, xf86CrtcPtr crtc)
{
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
int pipe = intel_crtc->pipe;
CARD32 dpll = INREG((pipe == 0) ? DPLL_A : DPLL_B);
CARD32 fp;
intel_clock_t clock;
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
fp = INREG((pipe == 0) ? FPA0 : FPB0);
else
fp = INREG((pipe == 0) ? FPA1 : FPB1);
clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
if (IS_I9XX(pI830)) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
switch (dpll & DPLL_MODE_MASK) {
case DPLLB_MODE_DAC_SERIAL:
clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ? 5 : 10;
break;
case DPLLB_MODE_LVDS:
clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ? 7 : 14;
break;
default:
xf86DrvMsg(pScrn->scrnIndex, X_WARNING,
"Unknown DPLL mode %08x in programmed mode\n",
(int)(dpll & DPLL_MODE_MASK));
return 0;
}
/* XXX: Handle the 100Mhz refclk */
i9xx_clock(96000, &clock);
} else {
Bool is_lvds = (pipe == 1) && (INREG(LVDS) & LVDS_PORT_EN);
if (is_lvds) {
clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
DPLL_FPA01_P1_POST_DIV_SHIFT);
clock.p2 = 14;
if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
i8xx_clock(66000, &clock); /* XXX: might not be 66MHz */
else
i8xx_clock(48000, &clock);
} else {
if (dpll & PLL_P1_DIVIDE_BY_TWO) {
clock.p1 = 2;
} else {
clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
}
if (dpll & PLL_P2_DIVIDE_BY_4)
clock.p2 = 4;
else
clock.p2 = 2;
i8xx_clock(48000, &clock);
}
}
/* XXX: It would be nice to validate the clocks, but we can't reuse
* i830PllIsValid() because it relies on the xf86_config output
* configuration being accurate, which it isn't necessarily.
*/
if (0)
i830PrintPll("probed", &clock);
return clock.dot;
}
/** Returns the currently programmed mode of the given pipe. */
DisplayModePtr
i830_crtc_mode_get(ScrnInfoPtr pScrn, xf86CrtcPtr crtc)
{
I830Ptr pI830 = I830PTR(pScrn);
I830CrtcPrivatePtr intel_crtc = crtc->driver_private;
int pipe = intel_crtc->pipe;
DisplayModePtr mode;
int htot = INREG((pipe == 0) ? HTOTAL_A : HTOTAL_B);
int hsync = INREG((pipe == 0) ? HSYNC_A : HSYNC_B);
int vtot = INREG((pipe == 0) ? VTOTAL_A : VTOTAL_B);
int vsync = INREG((pipe == 0) ? VSYNC_A : VSYNC_B);
mode = xcalloc(1, sizeof(DisplayModeRec));
if (mode == NULL)
return NULL;
mode->Clock = i830_crtc_clock_get(pScrn, crtc);
mode->HDisplay = (htot & 0xffff) + 1;
mode->HTotal = ((htot & 0xffff0000) >> 16) + 1;
mode->HSyncStart = (hsync & 0xffff) + 1;
mode->HSyncEnd = ((hsync & 0xffff0000) >> 16) + 1;
mode->VDisplay = (vtot & 0xffff) + 1;
mode->VTotal = ((vtot & 0xffff0000) >> 16) + 1;
mode->VSyncStart = (vsync & 0xffff) + 1;
mode->VSyncEnd = ((vsync & 0xffff0000) >> 16) + 1;
xf86SetModeDefaultName(mode);
xf86SetModeCrtc(mode, 0);
return mode;
}
static const xf86CrtcFuncsRec i830_crtc_funcs = {
.dpms = i830_crtc_dpms,
.save = NULL, /* XXX */
.restore = NULL, /* XXX */
.lock = i830_crtc_lock,
.unlock = i830_crtc_unlock,
.mode_fixup = i830_crtc_mode_fixup,
.prepare = i830_crtc_prepare,
.mode_set = i830_crtc_mode_set,
.commit = i830_crtc_commit,
.gamma_set = i830_crtc_gamma_set,
.shadow_create = i830_crtc_shadow_create,
.shadow_allocate = i830_crtc_shadow_allocate,
.shadow_destroy = i830_crtc_shadow_destroy,
.set_cursor_colors = i830_crtc_set_cursor_colors,
.set_cursor_position = i830_crtc_set_cursor_position,
.show_cursor = i830_crtc_show_cursor,
.hide_cursor = i830_crtc_hide_cursor,
/* .load_cursor_image = i830_crtc_load_cursor_image, */
.load_cursor_argb = i830_crtc_load_cursor_argb,
.destroy = NULL, /* XXX */
};
void
i830_crtc_init(ScrnInfoPtr pScrn, int pipe)
{
xf86CrtcPtr crtc;
I830CrtcPrivatePtr intel_crtc;
int i;
crtc = xf86CrtcCreate (pScrn, &i830_crtc_funcs);
if (crtc == NULL)
return;
intel_crtc = xnfcalloc (sizeof (I830CrtcPrivateRec), 1);
intel_crtc->pipe = pipe;
/* Initialize the LUTs for when we turn on the CRTC. */
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
crtc->driver_private = intel_crtc;
}